
CSE 127 Week 2
Discussion

Zijie Zhao

This discussion is being recorded

PA0: GDB + x86

● Sunday, April 10 at 6:00pm
● Group submissions

○ Piazza @68
● Goal is to prepare you for the next assignment

Virtual Machine

● Weird stack trace on startup and system doesn't start
○ In advanced boot options, try booting using sysvinit or switch to an older kernel

● VirtualBox throws an error on startup
○ This varies, but on windows it is most likely because you haven't enabled Hyper-V, which there

are resources to do here
● SSH is not required, but you need a way to transfer your solution out of the

VM

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v

GDB

● Gnu DeBugger
● Allows you to "see" inside your program

○ See registers, memory access, instructions
○ Breakpoints allow you to pause execution at any point

GDB Demo

GDB

● b main → add breakpoint
● info frame → print info about the current stack frame
● x/10x $ebp+4 → show as hex
● x/10i $eip → show as instructions
● x/5c name → show as char
● x/10xw, x/10xh, x/10xb → unit size word(4 bytes)/half(2 bytes)/byte
● disass main → disassemble a function
● tui enable → enable text user interface
● layout src/asm → show source code/assembly
● tui reg general → show registers
● set $ebp = 123 → set value for a register
● set {int}0xfff12345 = 123 → set value for a memory region

More resources here

https://www.sourceware.org/gdb/onlinedocs/gdb.html

echo

● Write a simplified version of the echo utility using the example code provided
● Use only raw x86 assembly code
● Hints:

○ Strings are terminated by a null byte (a null byte has value 0x0)
○ You might need to write a loop
○ You can make more than one system call
○ You can append a -g flag to the ASFLAGS in Makefile to get debugging information

generated, but you need to make sure your program also work without the flag

x86 Registers

● %esp, or the Stack Pointer
○ Designates the top of the stack
○ Grows from high to low memory addresses

● %ebp, or the Frame Pointer/Base Pointer
○ Points to middle of stack frame(to the saved base pointer)
○ Doesn't move as function calls are made

x86 Registers

● %eip, or the Instruction Pointer
○ Holds the address of the next instruction to be executed

%eip →

x86 Registers

● inc %eax → eax
● inc (%eax) → *eax
● inc 4(%eax) → *(eax + 4)
● inc 4(%eax, %ebx, 2) → *(eax + 4 + %ebx * 2)

x86 Instructions

● movl
● cmpb
● je, jne, jmp
● add, sub, inc, dec
● int 0x80

x86 Instructions

● Byte (B)
○ 8-bits

● Word (W)
○ 16-bits = 2 bytes

● Double word (L)
○ 32-bits = 4 bytes

● Quad word (Q)
○ 64-bits = 8 bytes

