
CSE 127 Discussion
Week 4 – Side 
Channels



Agenda

• PA2 – released 19th April, due 28th April
• Based on side channel attacks

• Memory attacks
• Timing attacks



What is a 
side channel 

attack

• A side-channel attack is a 
security exploit that aims 
to gather information from 
or influence the program 
execution of a system by 
measuring or exploiting 
indirect effects of the 
system or its hardware --
rather than targeting the 
program or its code directly.



PA2 : Side Channel Attacks



Assignment 
Overview

• Two-part assignment on side channels
• memhack(memory-based side channel attack)
• timehack(timing-based side channel attack)

• In both of these parts goal is to programmatically guess 
the password checked in check_pass in sysapp.c

• Rubric:
• memhack(10pts)
• timehack(10pts)



Starter code

• Starter code contains files 
memhack.c, timehack.c,
sysapp.c
• Modify memhack.c, 
timehack.c.
• DO NOT MODIFY sysapp.c



Sysapp.c
• password is passed by reference to 

check_pass which loops over all 
characters against true password

• correct_pass is static in starter code 
but will change while grading, so 
generalize the solution.

• Delay is added to make time hack 
more feasible

• Solution should call hack_system
when correct password is passed



memhack.c
• You are given a buffer of 

memory which will cause a 
seg fault if the program 
tries to access certain 
bytes.
• The code on the right 

demonstrates how you can 
catch seg faults in the 
program.





Hints

• You have ability to set access rights to memory and 
intercept seg faults.
• Password checker takes arg by reference, checks
characters sequentially and short circuits on first invalid 
character
• Referencing protected bytes will cause a seg fault



• For example, if correct password is “hello”

• check_pass(my_guess) causes a fault. Why?

• check_pass(my_guess) does not fault and returns 0. 
Why?



Catching Faults
• signal(SIGSEGV, SIG_DFL);
• signal(SIGSEGV, &handle_SEGV);
• This tells the system that whenever it hits a 

SIGSEGV fault, call the function 
handle_SEGV.

• SIG_DFL is the default handler, which the 
documentation requires us to do before 
being set to handler.

• Use sigsetjmp, siglongjmp to catch faults



timehack.c

• Execution time of check_pass depends on how many
characters you have guessed correctly.
• rdtsc returns processor cycle count , use this as a time 
by calling it before and after check_pass
• There might be lots of noise with each check_pass call, 
so take multiple samples.



Hints

• Don’t use printf’s in the code, they cause huge variances 
in exec time.
• Take multiple samples, take the median not the mean as
outliers might be extreme. Qsort might be helpful.
• If time is not continuing to increase as you progress
through characters , then you probably made an
incorrect guess guess earlier.



Good Luck!


