CSE 127 Discussion
Week 4 - Side
Channels




Agenda

* PA2 - released 19th April, due 28t April

« Based on side channel attacks
« Memory attacks
« Timing attacks



« A side-channel attack is a
security exploit that aims
) to gather information from
What is a or influence the program
- execution of a system by
Slde channel measuring or exploiting
attack indirect effects of the
system or its hardware --
rather than targeting the
program or its code directly.




PA2 : Side Channel Attacks



« Two-part assignment on side channels
- memhack(memory-based side channel attack)

= « timehack(timing-based side channel attack)
Assighment

« In both of these parts goal is to programmatically guess

= the password checked in check_pass in sysapp.c
Overview . Rbric

« memhack(10pts)
« timehack(10pts)




« Starter code contains files
memhack.c, timehack.c,

sysapp.c

Starter code » Modify memhack.c,
timehack.c.

* DO NOT MODIFY sysapp.c




Sysapp.c

« password is passed by reference to
check_pass which loops over all
characters against true password

« correct_pass is static in starter code
but will change while grading, so
generalize the solution.

« Delay is added to make time hack
more feasible

« Solution should call hack_system
when correct password is passed
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//

void delay() {
int j, q;
for (j = 0; j < 100; j++) {

}

}

Q=9 +7J;

int check_pass(char kpass) {
ANt
for (i = @; i <= strlen(correct_pass); i++) {

}

delay(); // artificial delay added for timehack

if (pass[il != correct_pass[i])
return 0;
}
return 1;

void hack_system(char *correct_pass) {
if (check_pass(correct_pass)) {

+

printf("0K: You have found correct password: '%s'\n", correct_pass);
printf("0K: Congratulations!\n");
exit(0);

} else {

};

printf("FAIL: The password is not correct! You have failed\n");
exit(3);




int demonstrate_signals() {
char xbuf = page_start;

m‘ m ha Ck. C // this call arranges that _if_ there is a SEGV fault in the future
| \ +lhhan

// (anywhere ir Fho meeseas control will transfer directly to this
// point with sigjmp_buf jumpout ;
if [(sigsetjmp(jumpout, 1) == 1))

return 1; // we had a SEGV

« You are given a buffer of
memory which will cause a S
seg fault if the program e pp
tries to access certain }
bytes.

 The code on the right
demonstrates how you can
catch seg faults in the
program.



Protected bytes

| page 3

| e 0

page_start



Hints

* You have ability to set access rights to memory and
intercept seg faults.

« Password checker takes arg by reference, checks
characters sequentially and short circuits on first invalid

character
« Referencing protected bytes will cause a seg fault



* For example, if correct password is “hello”

« check_pass(my_guess) causes a fault. Why?

_paget1 o NSO | page3

my_Buess

» check_pass(my_guess) does not fault and returns O.
Why?



Catching Faults

« signal(SIGSEGV, SIG_DFL);
« signal(SIGSEGV, &handle_SEGV);

* This tells the system that whenever it hits a
SIGSEGV fault, call the function
handle_SEGV.

« SIG_DFL is the default handler, which the
documentation requires us to do before
being set to handler.

« Use sigsetjmp, siglongjmp to catch faults



timehack.c

« Execution time of check_pass depends on how many
characters you have guessed correctly.

 rdtsc returns processor cycle count , use this as a time
by calling it before and after check_pass

* There might be lots of noise with each check_pass call,
so take multiple samples.



Hints

« Don’t use printf’s in the code, they cause huge variances
In exec time.

« Take multiple samples, take the median not the mean as
outliers might be extreme. Qsort might be helpful.

o If time is not continuing to increase as you progress
through characters , then you probably made an
incorrect guess guess earlier.



Good Luck!
’-——\




