CSE 127 Discussion
Week 4 - Side
Channels




Agenda

* PA2 - released 19th April, due 28t April

« Based on side channel attacks
« Memory attacks
« Timing attacks



« A side-channel attack is a
security exploit that aims
) to gather information from
What is a or influence the program
- execution of a system by
Slde channel measuring or exploiting
attack indirect effects of the
system or its hardware --
rather than targeting the
program or its code directly.




PA2 : Side Channel Attacks



« Two-part assignment on side channels
- memhack(memory-based side channel attack)

= « timehack(timing-based side channel attack)
Assighment

« In both of these parts goal is to programmatically guess

= the password checked in check_pass in sysapp.c
Overview . Rbric

« memhack(10pts)
« timehack(10pts)




« Starter code contains files
memhack.c, timehack.c,

sysapp.c

Starter code » Modify memhack.c,
timehack.c.

* DO NOT MODIFY sysapp.c




Sysapp.c

« password is passed by reference to
check_pass which loops over all
characters against true password

« correct_pass is static in starter code
but will change while grading, so
generalize the solution.

« Delay is added to make time hack
more feasible

« Solution should call hack_system
when correct password is passed

77
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49

//

void delay() {
int j, q;
for (j = 0; j < 100; j++) {

}

}

Q=9 +7J;

int check_pass(char kpass) {
ANt
for (i = @; i <= strlen(correct_pass); i++) {

}

delay(); // artificial delay added for timehack

if (pass[il != correct_pass[i])
return 0;
}
return 1;

void hack_system(char *correct_pass) {
if (check_pass(correct_pass)) {

+

printf("0K: You have found correct password: '%s'\n", correct_pass);
printf("0K: Congratulations!\n");
exit(0);

} else {

};

printf("FAIL: The password is not correct! You have failed\n");
exit(3);




int demonstrate_signals() {
char xbuf = page_start;

m‘ m ha Ck. C // this call arranges that _if_ there is a SEGV fault in the future
| \ +lhhan

// (anywhere ir Fho meeseas control will transfer directly to this
// point with sigjmp_buf jumpout ;
if [(sigsetjmp(jumpout, 1) == 1))

return 1; // we had a SEGV

« You are given a buffer of
memory which will cause a S
seg fault if the program e pp
tries to access certain }
bytes.

 The code on the right
demonstrates how you can
catch seg faults in the
program.



Protected bytes

| page 3

| e 0

page_start



Hints

* You have ability to set access rights to memory and
intercept seg faults.

« Password checker takes arg by reference, checks
characters sequentially and short circuits on first invalid

character
« Referencing protected bytes will cause a seg fault



* For example, if correct password is “hello”

« check_pass(my_guess) causes a fault. Why?

_paget1 o NSO | page3

my_Buess

» check_pass(my_guess) does not fault and returns O.
Why?



Catching Faults

« signal(SIGSEGV, SIG_DFL);
« signal(SIGSEGV, &handle_SEGV);

* This tells the system that whenever it hits a
SIGSEGV fault, call the function
handle_SEGV.

« SIG_DFL is the default handler, which the
documentation requires us to do before
being set to handler.

« Use sigsetjmp, siglongjmp to catch faults



timehack.c

« Execution time of check_pass depends on how many
characters you have guessed correctly.

 rdtsc returns processor cycle count , use this as a time
by calling it before and after check_pass

* There might be lots of noise with each check_pass call,
so take multiple samples.



Hints

« Don’t use printf’s in the code, they cause huge variances
In exec time.

« Take multiple samples, take the median not the mean as
outliers might be extreme. Qsort might be helpful.

o If time is not continuing to increase as you progress
through characters , then you probably made an
incorrect guess guess earlier.



Good Luck!
’-——\




