
Week 9 Discussion

PA5: Cryptography

Sumanth Rao

CSE 127

Overview

https://zzjas.github.io/cse127sp22/pa/pa5.html

● Due date - Wednesday, June 1st @ 11:59 PM

● Groups of up to 4

● Five parts
○ Vigenère Cipher
○ MD5 Length Extension
○ MD5 collisions
○ RSA signature forgery
○ Writeup

https://zzjas.github.io/cse127sp22/pa/pa5.html

Ceasar Ciphers

Plaintext: ATTACKATDAWN

Ciphertext: DWWDFNDWGDZQ

Shift letters of plaintext by fixed amount to get ciphertext

A + 3 → D
T + 3 → W
C + 3 → F
…

Part 1: Vigenère Ciphers

 Plaintext: ATTACKATDAWN
 Key: BLAISEBLAISE
Ciphertext: BETIUOBEDIOR

The combination of several Caesar Ciphers

Key ‘A’ means no shift
Key ‘B’ means shift by 1
Key ‘C’ means shift by 2
…

Each of you should see a PA5: Ciphertext
assignment on Gradescope

PID: ………

ASABREVLDNXGSVWBVBIHWVXXCTLMUYALCIKUTV
JJNQUFCFDNPSANQGAVKKXOBELGZAPDCQ…

● Be careful, when copying the ciphertext from
gradescope to your local system.

● It is a single string of alphabets with no spaces
or newlines in between.

● If working in Use any one of the team-members

Part 1: Vigenère Ciphers

def vigDecrypt(ciphertext, key):
 decrypted = ''
 for i, ch in enumerate(ciphertext):
 decrypted += unshiftLetter(ch, key[i % len(key)])
 return decrypted

def unshiftLetter(letter, keyLetter):
 letter = ord(letter) - ord("A")
 keyLetter = ord(keyLetter) - ord("A")
 new = (letter - keyLetter) % 26
 return chr(new + ord("A"))

HINTS

● Caesar Cipher is vulnerable to frequency analysis

● Vigenère Cipher is composed of |Key| Caesar Ciphers that
can be defeated individually

● How can you figure out |Key| ?
○ https://inventwithpython.com/hacking/chapter21.htm

l
○ Or maybe just bruteforce??

● How do you know you got the correct key?

https://inventwithpython.com/hacking/chapter21.html
https://inventwithpython.com/hacking/chapter21.html

Part 2: MD5 Length Extension

pymd5.py

from pymd5 import md5, padding

print(md5(m).hexdigest())

padding(count)

h = md5(state=bytes.fromhex("3ec…"), count=512)

x = "Good advice"

h.update(x)

print(h.hexdigest())

Generate an URL where the token is the valid MD5 hash
of extended parameters

http://bank.cse127.ucsd.edu/pa5/api?token=6c256f4a53dd0068b2d82306d9c09d1c&
user=george&command1=ListSquirrels&command2=NoOp

where token is MD5(user's 8-character password || user=...)

● For this part it is pymd5.py which has some functions
to get at individual steps of md5 hashing

● Key idea: padding is 1 followed by necessary number
of zeros at end of message, but you need to be able
to have a 1 followed by zeros as part of the message
as well

● Part 2: Experimenting in the assignment walks you
through this and should make the attack
understandable

Part 2: MD5 Length Extension

HINTS

● python3 len_ext_attack.py "http://………NoOp"

● Only use urllib.parse.quote() for the padding

● Use the Gradescope autograder for testing if your
attack works.

Part 3: MD5 collisions

prefix

#!/bin/bash

cat << "EOF" | openssl dgst -sha256 > DIGEST

suffix

<BLANK LINE>

EOF

digest=$(cat DIGEST | sed 's/(stdin)= //')

echo "The sha256 digest is $digest"

● We provide fastcoll which generates MD5 collisions

● You might need to build this code if its not available
on your OS so there is also a makefile to help

● Key idea: once you have a collision, you can use your
previous part to add identical suffixes to them and
they will continue to collide

Two programs with different behavior that hash to the
same thing

Part 3: MD5 collisions

HINT

● Think about how you can hide junk you are creating,
will be useful later as well

● Use openssl dgst -sha256 file1 file2 and openssl dgst
-md5 file1 file2 to verify

● Remember to submit good and bad, not good.sh or
bad.sh, not good.py or bad.py

good

#!/bin/bash
…

submission
file example

Part 4: RSA Signature - Textbook

● Alice has public key (N, e) and private key d where x^(de) = x mod
N

● To sign a message m, Alice computes s = m^d and Bob can verify
by checking that s^e = m mod N

● Eve can trivially generate a signed message (m=s^e, s), where s^e
is the message and s the signature

● Bob verifies the signature by checking by s^e=m! Uh oh…

Part 4: RSA Signature

● To combat the previous problem, structure is added to the
message

● A k-bit RSA key used to sign a SHA-1 hash digest will generate the
following padded value of m:

Sig = padding(SHA1(m))^d mod N
Verify =(strip_padding(Sig^e mod N) == SHA1(m))

Part 4: RSA Signature Forgery

● So now Eve can’t compute just any s^e because it needs to match
the format

● Note that number of FF bytes is determined in specification

● What happens if this is not checked? (i.e. implementation just
discards FF bytes until reaches a 00 byte)

● Instead of generating a signature s such that s^e is of the form on
the previous slide, it only needs to match on a certain number of
high order bytes with any number of FF padding bytes

● Remember e=3 makes things simpler vs e=65537

Part 4: RSA Signature Forgery

HINTS

● If got stuck finding a valid root, think about
how many higher bytes in the signature the
verification process should recover?

● Don’t use openssl to test your solution.
Write your own validation code that doesn’t
check the length of FF s

roots.py

from Crypto.PublicKey import RSA

from Crypto.Hash import SHA

from roots import *

import sys

message = sys.argv[1]

Your code to forge a signature goes here.

some example functions from roots

root, is_exact = integer_nthroot(27, 3)

print(integer_to_base64(root).decode())

Part 5: Writeup

● 7 questions
○ 4 from part 3
○ and 3 from part 5

● Answers should be concise and complete

● Write a comment if you used your code from previous classes (e.g.
CSE 107)

Thank you

