
CSE 127: Computer Security

Symmetric-key Cryptography

George Obaido

Some slides adopted from Nadia Heninger, Deian Stefan, Kirill Levchenko and Dan Boneh

Cryptography

• Is:

➤ A tremendous tool

➤ The basis for many security mechanisms

• Is not:

➤ The solution to all security problems

➤ Reliable unless implemented and used properly

➤ Something you should try to invent yourself

➤ Another word for blockchain

➤ Used: ATM Machines, Bitcoin, Browsers (TLS), Google

authenticator, etc.

How Does It Work?

• Goal: learn how to use crypto primitives correctly

➤ We will treat them as a black box that mostly does

what it says

• To learn what’s inside the black box take CSE 107

• Do not roll your own crypto*

* Exceptions: You are Daniel J. Bernstein, Joan Daemen, Neal Koblitz, Dan Boneh, or

similar, or you have finished your PhD in cryptography under an advisor of that caliber, and you

work has been accepted at Crypto, Eurocrypt, Asiacrypt, FSE, or PKC and/or NIST is running

another competition, and then wait several years for full standardization and community vetting

r

.

How Does It Work?

• Goal: learn how to use crypto primitives correctly

➤ We will treat them as a black box that mostly does

what it says

• To learn what’s inside black box take CSE 107

• Do not roll your own crypto*

* Exceptions: You are Daniel J. Bernstein, Joan Daemen, Neal Koblitz, Dan Boneh, or

similar, or you have finished your PhD in cryptography under an advisor of that caliber, and your

work has been accepted at Crypto, Eurocrypt, Asiacrypt, FSE, or PKC and/or NIST is running

another competition, and then wait several years for full standardization and community vetting.

Real-world crypto: SSL/TLS

1. Browser and web server run “handshake

protocol’’:

➤ Establishes shared secret key using public-key

cryptography (next lecture)

2. Browser and web server use negotiated key to

communicate.

Real-world crypto: File encryption

Password

Decrypted data

➤ Files are symmetrically encrypted with a secret key

➤ The symmetric key is stored encrypted or in

tamperproof hardware.

➤ The password is used to unlock the key so the data

can be decrypted.

This class: secure communication

Alice Bob

Authenticity: Parties cannot be impersonated

Eve

➤

➤ Secrecy/Confidentiality: No one else can read messages

➤ Integrity: Messages cannot be modified

Attacker models

➤

Alice Bob

Passive attacker: Eve only snoops on channel

➤ Active attacker: Eve can snoop, inject, block, tamper, etc.

Eve

Outline

• Symmetric-key crypto

➤ Encryption

➤ Hash functions

➤ Message authentication codes (MAC)

• Next time: asymmetric (public-key) crypto

➤ Key exchange

➤ Digital signatures

Symmetric-key encryption

➤ Ek(m) = c

• Decryption: (key, ciphertext) → plaintext

➤ Dk(c) = m

• Functional property: Where Dk(Ek(m)) = m

E
m c

k k

• Encryption: (key, plaintext) → ciphertext

D
c m

Symmetric-key encryption

• One-time key: used to encrypt one message

➤ E.g., encrypted email, new key generate per email

• Multi-use key: used to encrypt multiple
messages

➤ E.g., same key used to encrypt many packets

E
m c

k

D
c m

k

Symmetric-key encryption

• One-time key: used to encrypt one message

➤ E.g., encrypted email, new key generate per email

• Multi-use key: used to encrypt multiple messages

➤ E.g., same key used to encrypt many packets

E
m c

k

D
c m

k

Symmetric-key encryption

• One-time key: used to encrypt one message

➤ E.g., encrypted email, new key generate per email

• Multi-use key: used to encrypt multiple messages

➤ E.g., same key used to encrypt many packets

E
m c

k

D
c m

k

n n

• One-time key: used to encrypt one message

➤ E.g., encrypted email, new key generate per email

• Multi-use key: used to encrypt multiple messages

➤ E.g., same key used to encrypt many packets

E
m

k

c c
D

m

k

n n

Symmetric-key encryption
Need unique/random once

Security definition: Passive eavesdropper

• Simplest security definition

➤ How do you know an encryption scheme is secure

against a passive eavesdropper?

➤ Want: “Ciphertext reveals nothing about plaintext”

➤ Informal formal definition: Given Ek(m1) and Ek(m2),

attacker can’t distinguish which ciphertext encrypts

which plaintext without key

Vernam (1917)

Example: One Time Pad (OTP)

➤ Encryption:

➤ Decryption:

c = Ek(m) = m ⨁ k

Dk(c) = c ⨁ k = (m ⨁ k) ⨁k = m

0 1 0 1 1 1 0 0 1 0Key:

1 1 0 0 0 1 1 0 0 0

Plaintext:

Ciphertext: 1 0 0 1 1 0 1 0 1 0

Vernam (1917)

Example: One Time Pad (OTP)

➤ Encryption: c = Ek(m) = m ⨁ k

➤ Decryption: Dk(c) = c ⨁ k = (m ⨁ k) ⨁k = m

0 1 0 1 1 1 0 0 1 0Key:

1 1 0 0 0 1 1 0 0 0

Plaintext:

Ciphertext: 1 0 0 1 1 0 1 0 1 0

OTP security

• Shannon (1949)

➤ Information-theoretic security: without key, ciphertext

reveals no “information” about plaintext

• Problems with OTP

➤ Can only use key once

➤ Key is as long as the message

Computational cryptography

• Want to encrypt with shorter keys

➤ Problem: information-theoretic security is impossible if

key space is smaller than message space.

• Solution: Use a more practical security notion

➤ It should be infeasible for a computationally bounded

attacker to violate security

➤ In practice: attacks should take at least e.g., 2128 time

Quiz of the day

Question 1

0 1 1 0 0 0 0 0Key:

1 0 0 1 0 0 0 0

Plaintext:

Ciphertext:

Question 2

1 1 0 1 1 0 0 0Key:

1 1 0 1 0 0 0 0

Plaintext:

Ciphertext:

Convert the following into Ciphertexts using the Vernam’s OTP.

Symmetrical Cryptography

➤ Examples: ChaCha, Salsa, etc.

Sharif and Mansoor (2010)

Stream ciphers

• Problem: OTP key is as long as message

• Solution: Pseudo random generator

• Stream ciphers uses bit-by-bit to generate

ciphertext.

➤ Examples: ChaCha, Salsa, etc.

key

message

PRG

ciphertext

Ek(m) = PRG(k) ⊕m

Computationally hard to

distinguish from random

Dangers in using stream ciphers

• Can we use a key more than once?

➤ E.g., c1 ← m1 ⊕ PRG(k)

c2 ←

Yes? No?

m2 ⊕ PRG(k)

➤

➤ Eavesdropper does: c1 c2 → m1 m2

➤ Enough redundant information in English that:

m1 m2 → m1 , m2

Dangers in using stream ciphers

• Can we use a key more than once?

➤ E.g., c1 ← m1 ⊕ PRG(k)

c2 ←

Yes? No?

m2 ⊕ PRG(k)

➤

➤ Eavesdropper does: c1 c2 → m1 m2

Enough redundant information in English that:

m1 m2 → m1 , m2

➤

Chosen plaintext attacks

• Attacker can learn encryptions for arbitrary plaintexts

• Historical example:

➤ During WWII the US Navy sent messages about Midway Island

and watched Japanese ciphertexts to learn codename (“AF”)

• More recent (but still a bit old) example:

➤ WEP WiFi encryption has poor randomization and can result in

the same stream cipher used multiple times

Block ciphers: crypto work horses

➤ Each input is mapped to one output (depends on key)

• Common examples:

➤ E.g., 3DES: |m| = |c| = 64 bits, |k| = 168 bits

➤ E.g., AES: |m| = |c| = 128 bits, |k| = 128, 192, 256

E
m c

k k

• Block cipher: permutation of fixed-size input block

D
c m

Correct block cipher choice: AES

Challenges with block ciphers

• Block ciphers operate on single fixed-size block

• How do we encrypt longer messages?

➤ Several modes of operation for longer messages

• How do we deal with messages that are not

block-aligned?

➤ Must pad messages in a distinguishable way

Insecure block cipher usage:

ECB mode

Source:wikipedia

Why is ECB so bad?

Ek()=

Source:wikipedia

Subtle attacks that abuse padding possible!

Source:wikipedia

Moderately secure usage:

CBC mode with random IV

Better block cipher usage:

CTR mode with random IV

Essentially use block cipher as stream cipher!

Source:wikipedia

If your cryptolibrary is making you choose a block

cipher mode of operation, use a different library.

(Right answer: block cipher mode of operation can be

built into an AEAD mode (end of lecture).)

What mode should you choose?

What security do we get?

• All encryption breakable by brute force given

enough knowledge about plaintext

➤ Try to decrypt ciphertext with every possible key until a

valid plaintext is found

• Attack complexity proportional to size of key space

➤ 128-bit key requires 2128 decryption attempts

Chosen ciphertext attacks

• What if Eve can alter the ciphertexts sent

between Alice and Bob?

• Symmetric encryption alone is not enough to

ensure security.

➤ Need to protect integrity of ciphertexts (and thus

underlying encrypted messages)

Eve

Alice Bob

Outline

• Symmetric-key crypto

➤ Encryption

➤ Hash functions√

➤ Message authentication codes

• Asymmetric (public-key) crypto

➤ Key exchange

➤ Digital signatures

Hash Functions

• A (cryptographic) hash function maps arbitrary

length input into a fixed-size string

➤ |m| is arbitrarily large

➤ |h| is fixed, usually 128-512 bits

m
H

h

h=H(m)

Hash Function Properties

• Finding a preimage is hard

➤ Given h, find m such that H(m)=h

• Finding a second preimage is hard

➤ Given m1, find m2 such that H(m1)=H(m2)

• Finding a collision is hard

➤ Find m1 and m2 such that H(m1)=H(m2)

Hash function security

• A 128-bit hash function has 64 bits of security

➤ Birthday bound: find collision in time 264

Real-world crypto: Hash functions

• Versioning systems (e.g., git)

➤ Better than _1, _final, _really_final

• Sub-resource integrity

➤ Integrity of files you include from CDN

• File download integrity

➤ Make sure the thing you download is the thing you

thought you were downloading

• Blockchain

Popular broken hash functions

• MD5: Message Digest

➤ Designed by Ron Rivest

➤ Output: 128 bits

• SHA-1: Secure Hash Algorithm 1

➤ Designed by NSA

➤ Output: 160 bits

Hash functions

• SHA-2: Secure Hash Algorithm 2

➤ Designed by NSA

➤ Output: 224, 256, 384, or 512 bits

• SHA-3: Secure Hash Algorithm 3

➤ Result of NIST SHA-3 contest

➤ Output: arbitrary size

➤ Replacement once SHA-2 broken

Outline

• Symmetric-key crypto

➤ Encryption

➤ Hash functions

➤ Message authentication code √

• Next time: asymmetric (public-key) crypto

➤ Key exchange

➤ Digital signatures

Chosen ciphertext attacks

• What if Eve can alter the ciphertexts sent

between Alice and Bob?

• Symmetric encryption alone is not enough to

ensure security.

➤ Need to protect integrity of ciphertexts (and thus

underlying encrypted messages)

MACs

• Validate message integrity based on shared secret

• MAC: Message Authentication Code

➤ Keyed function using shared secret

➤ Hard to compute function without knowing key

a=MACk(m)

HMAC construction

• HMAC: MAC based on hash function

MACk(m) = H(k⊕opad ‖ H(k⊕ipad ‖ m))

➤ HMAC-SHA256: HMAC construction using SHA-256

Other MAC constructions

• In 2009, Flickr required API calls to use

authentication token that looked like:

MD5(secret || arg1=val1&arg2=val2&…)

• Is MACk(m) = H(k || m) a secure MAC?

➤ No! If H is MD5, SHA1 or SHA2

➤ Use HMAC!

Other MAC constructions

• In 2009, Flickr required API calls to use

authentication token that looked like:

MD5(secret || arg1=val1&arg2=val2&…)

• Is MACk(m) = H(k || m) a secure MAC?

➤ No! If H is MD5, SHA1 or SHA2

➤ Use HMAC!

Combining MAC with encryption

MAC then Encrypt (SSL)

➤ Integrity for plaintext not

ciphertext

➤ Issue: need to decrypt before

you can verify integrity

➤ Hard to get right!

m

a

kIMAC

c

kEE

m||a

Combining MAC with encryption

Encrypt and MAC (SSH)

➤ Integrity for plaintext not

ciphertext

➤ Issue: need to decrypt before

you can verify integrity

➤ Hard to get right!

m

a

kIMAC

c

kE E

||

Combining MAC with encryption

Encrypt then MAC (IPSec)

➤ Integrity for plaintext and

ciphertext

➤ Almost always right!

m

a

kIMAC

c

kE E

||

AEAD construction

• Authenticated Encryption with Associated Data

➤ AES-GCM, AES-GCM-SIV

• Always use an authenticated encryption mode

➤ Combines mode of operation with integrity protection/

MAC in the right way

Good libraries have good defaults

