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Today

► Key Exchange

► Public Key Encryption

► Digital Signatures



Asymmetric cryptography/public-key cryptography

Main insight: Separate keys for different operations.

Keys come in pairs, and are related to each other by the specific 

algorithm

► Public key: used to encrypt or verify signatures

► Private key: used to decrypt and sign



Public-key encryption

► Encryption: (public key, plaintext) → ciphertext

Encpk(m) = c

► Decryption: (secret key, ciphertext) → plaintext

Decsk(c) = m

Properties:

► Encryption and decryption are inverse operations:



Public-key encryption

► Encryption: (public key, plaintext) → ciphertext

Encpk(m) = c

► Decryption: (secret key, ciphertext) → plaintext

Decsk(c) = m

Properties:

► Encryption and decryption are inverse operations:

Decsk(Encpk(m)) = m

► Secrecy: ciphertext reveals nothing about plaintext

► Computationally hard to decrypt without secret key

► The point:

► Anybody with your public key can send you a secret message! 
Solves key distribution problem.



Modular Arithmetic Review

Division: Let n,d,q,r be integers.

ln/d j = q

n = qd + r  

n ≡ r mod d

0 ≤ r < d

Facts about remainders/modular arithmetic:

Add: (a mod d ) + (b mod d ) ≡ (a + b) mod d

Subtract: (a mod d ) − (b mod d ) ≡ (a − b) mod d

Multiply: (a mod d) · (b mod d) ≡ (a · b) mod d



Modular Inverse: “Division” for modular arithmetic

If a · b mod d = c mod d we would like c/b mod d = a mod d.

Let’s try this: let a = 3, b = 2, and d = 4
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This doesn’t quite work, it says 3 = 1 mod 4!

a
b

Fix: For rationals, = a · 1 1
b b

b · = 1.

b
Define modular inverse: 1 means b− 1 mod d.

► b− 1 mod d is a value such that b · b− 1 ≡ 1 mod d.

► Example: 3 · (3− 1 mod 5) ≡



Modular Inverse: “Division” for modular arithmetic

If a · b mod d = c mod d we would like c/b mod d = a mod d.

Let’s try this: let a = 3, b = 2, and d = 4 

This doesn’t quite work, it says 3 = 1 mod 4!

a
b

Fix: For rationals, = a · 1 1
b b

b · = 1.

b
Define modular inverse: 1 means b− 1 mod d.

► b− 1 mod d is a value such that b · b− 1 ≡ 1 mod d.

► Example: 3 · (3− 1 mod 5) ≡ 3 · 2 ≡ 1 mod 5.

► If gcd(a,d) = 1 then a− 1 is well defined.

► Efficient to compute.



Modular exponentiation and discrete log

Modular exponentiation

► Over the integers, ga = g · g · g ...g

► ga mod d it’s the same:
ga mod d = (((g mod d) · g mod d) ...g mod d) mod d

► Efficient to compute using the binary representation of a.
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Modular exponentiation and discrete log

Modular exponentiation

► Over the integers, ga = g · g · g ...g

► ga mod d it’s the same:
ga mod d = (((g mod d) · g mod d) ...g mod d) mod d

► Efficient to compute using the binary representation of a.

“Inverse” of modular exponentiation: Discrete log

► Over the reals, if ba = y then logb y = a.

► Define discrete log similarly:
Input b,d, y , discrete log is a such that ba ≡ y mod d.

► No known polynomial-time algorithm to compute this.





Symmetric cryptography

AESk(m)



Public key crypto idea # 1: Key exchange
Solving key distribution without trusted third parties

AESk(m)

Key Exchange

k = shared secret k = shared secret



Textbook Diffie-Hellman Key Exchange

Public Parameters

p a prime

g an integer modp

Key Exchange



Textbook Diffie-Hellman Key Exchange

Public Parameters

p a prime

g an integer modp

Key Exchange

ga mod p

gb mod p

gab mod pgab mod p

Note: (ga)b mod p = gab mod p = gba mod p(gb)a mod p.



Diffie-Hellman Security

ga mod p

gb mod p

gab mod pgab mod p

► Most efficient algorithm for passive eavesdropper to break: 

Compute discrete log of public values ga mod p or gb mod p.
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Diffie-Hellman Security

ga mod p

gb mod p

gab mod pgab mod p

► Most efficient algorithm for passive eavesdropper to break: 

Compute discrete log of public values ga mod p or gb mod p.

► Parameter selection: p should be ≥ 2048 bits.

► Do not implement this yourself ever: discrete log is only hard 

for certain choices of p and g.

► Best current choice: Use elliptic curve Diffie-Hellman. 

(Similar idea, more complicated math.)



Diffie-Hellman insecure against man-in-the-middle

Alice

Mallory

Bob

ga mod p

Mallory
gb mod p

Active adversary can modify Diffie-Hellman messages in transit and 

learn both shared secrets.

Allows transparent MITM attack against later encryption.



Diffie-Hellman insecure against man-in-the-middle

Alice

gan

Mallory

Bob

gmb

ga mod p gm mod p

Mallory
gn mod p gb mod p

Active adversary can modify Diffie-Hellman messages in transit and 

learn both shared secrets.

Allows transparent MITM attack against later encryption.

Fix: Need to authenticate messages.



Computational complexity for integer problems

► Integer multiplication is efficient to compute.

► There is no known polynomial-time algorithm for 

general-purpose factoring.

► Efficient factoring algorithms for many types of integers. Easy 

to find small factors of random integers.

► Modular exponentiation is efficient to compute.

► Modular inverses are efficient to compute.



Idea # 2: Key encapsulation/public-key encryption
Solving key distribution without trusted third parties

AESk(m)

c = KEM(k)

k = DEC(c)



Practice

Using the Diffie-Hellman Key Exchange, find the shared key between Kim and John

if the prime, P, is 23 and primitive modulo, g, is 5. Note that Kim’s secret key, a, is 4 

and John’s secret key, b, is 3. 



Group Exercise
Using the Diffie-Hellman Key Exchange, find the shared key between Alice and Bob if the 

prime, P, is 11 and primitive modulo, g, is 2. Note that Alice’s secret key, a, is 4 and Bob’s 

secret key, b, is 5.





Textbook RSA Encryption
[Rivest Shamir Adleman 1977]

Public Key pk

N = pq modulus

e encryption exponent

Secret Key sk

p,q primes

d decryption exponent

(d = e−1 mod (p − 1)(q − 1) = e−1 mod φ(N))

pk = (N ,e)

c = Encpk(m) = me mod N

m = Decsk(c) = cd mod N

Dec(Enc(m)) =med mod N ≡ m1+kφ(N) ≡ m mod N by  

Euler’s theorem (mφ(N) ≡ 1 mod N ).



RSA Security

► Best algorithm to break RSA: Factor N and compute d .

► Factoring is not efficient in general.

► Current key size recommendations: N should be ≥ 2048 bits.

► Do not ever implement this yourself. Factoring is only hard for 

some integers, and textbook RSA is insecure.



Textbook RSA is super insecure

Unpadded RSA encryption is homomorphic under multiplication.
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ciphertext Enc(ma) = cae mod N for any a.
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Textbook RSA is super insecure

Unpadded RSA encryption is homomorphic under multiplication.

Attack: Malleability

Given a ciphertext c = Enc(m) = me mod N, attacker can forge 

ciphertext Enc(ma) = cae mod N for any a.

Attack: Chosen ciphertext attack

Given a ciphertext c = Enc(m) for unknown m, attacker asks for 

Dec(cae mod N ) = d and computes m = da− 1 mod N .

Fix: always use padding on messages.



RSA PKCS #1 v1.5 padding
Most common implementation choice even though it is insecure

pad(m) = 00 02 [random padding s t r i n g ] 00 [m]

► Encrypter pads message, then encrypts padded messageusing 

RSA public key: Encpk(m) = pad(m)e mod N

► Decrypter decrypts using RSA private key, strips off padding 

to recover original data: Decsk(c) = cd mod N = pad(m)

PKCS#1v1.5 padding is vulnerable to a number of padding 

attacks. It is still commonly used in practice.



Idea #3: Digital Signatures

m,Sign(m)

Verify Sign(m)

Bob wants to verify Alice’s signature using only a public key.

► Signature verifies that Alice was the only one who could have 

sent this message.

► Signature also verifies that the message hasn’t been modified 

in transit.



Digital Signatures

► Signing: (secret key, message) → signature

Signsk(m) = s

► Verification: (public key, message, signature) → bool

Verifypk (m,s) = true | false

Signature properties:

► Verification of signed message succeeds:



Digital Signatures

► Signing: (secret key, message) → signature

Signsk(m) = s

► Verification: (public key, message, signature) → bool

Verifypk (m,s) = true | false

Signature properties:

► Verification of signed message succeeds:

► Verifypk(m,Signsk(m)) = true

► Unforgeability: Can’t compute signature for message m that 

verifies with public key without corresponding secret key.

► The point:

► Anybody with your public key can verify that you signed 
something!



Textbook RSA Signatures
[Rivest Shamir Adleman 1977]

Public Key pk

N = pq modulus

e public exponent

Secret Key sk

p,q primes

d private exponent
(d = e− 1 mod (p − 1)(q − 1))

pk = (N ,e)

m, s = Sign(m) = md mod N

Verify(m,s): m = se mod N

Works for the same reason RSA encryption does.



Textbook RSA signatures are super insecure

Attack: Signature forgery

1. Attacker wants Sign(x).

2. Attacker computes z = xy e mod N for some y .

3. Attacker asks signer for s = Sign(z ) = z d mod N .

4. Attacker computes Sign(x) = sy− 1 mod N .

Countermeasures:

► Always use padding with RSA.

► Sign hash of m and not raw message m.

Positive viewpoint:

► Blind signatures: Lots of neat crypto applications.



RSA PKCS #1 v1.5 signature padding
Most widely used padding scheme in practice

pad(m) = 00 01 [FF FF FF . . . FF  FF] 00 [ d a t a H(m)]

► Signer hashes and pads message, then signs padded message 

using RSA private key.

► Verifier verifies using RSA public key, strips off padding to 

recover hash of message.

Q: What happens if a decrypter doesn’t correctly check padding 

length?

A: Bleichenbacher low exponent signature forgery attack.

https://www.youtube.com/watch?v=2xspZfXI_nY



Bleichenbacher RSA Signature Forgery

pad(m) = 00 01 [FF FF FF . . . FF  FF] 00 [ d a t a H(m)]

If victim shortcuts padding check: just looks for padding format 

but doesn’t check length, and signature uses e = 3:

1. Construct a perfect cube over the integers, ignoring N, such 

that

x = 0001FF ...FF 00[hash of forged message][garbage]

2. Compute s such that s3 = x .

(Easy way: set garbage to zero and take cube root, i.e.,
s = rxl1/3.)

3. Lazy implementation validates bad signature!



Security for RSA signatures

► Same as RSA encryption.

► Recommendation: Use ECDSA or ed25519 instead.



Putting it all together
How public-key cryptography is used in practice

ga

gb

s = Sign(ga,gb)

AESk(m)

k = gab

Verify(s)
k = gab

► Diffie-Hellman used to negotiate shared session key.

► Alice verifies Bob’s signature to ensure that key exchange was 

not man-in-the-middled.

► Shared secret used to symmetrically encrypt data.



Public-key cryptography and quantum computers
Right now, all public-key cryptography used in the real world 

involves three “hard” problems:

► Factoring

► Discrete log mod primes

► Elliptic curve discrete log

All of these problems can be solved efficiently by a general-purpose 

quantum computer.

Big standardization effort now to develop replacements:

► Lattice-based cryptography

► Multivariate cryptography

► Hash-based signatures

► Supersingular isogeny Diffie-Hellman

These will likely be used more in the real world in the next few 

years.


