
CSE 127: Introduction to Security

Public-Key Cryptography

George Obaido

UCSD

Winter 2022

Slides adapted from Nadia Heninger

Today

► Key Exchange

► Public Key Encryption

► Digital Signatures

Asymmetric cryptography/public-key cryptography

Main insight: Separate keys for different operations.

Keys come in pairs, and are related to each other by the specific

algorithm

► Public key: used to encrypt or verify signatures

► Private key: used to decrypt and sign

Public-key encryption

► Encryption: (public key, plaintext) → ciphertext

Encpk(m) = c

► Decryption: (secret key, ciphertext) → plaintext

Decsk(c) = m

Properties:

► Encryption and decryption are inverse operations:

Public-key encryption

► Encryption: (public key, plaintext) → ciphertext

Encpk(m) = c

► Decryption: (secret key, ciphertext) → plaintext

Decsk(c) = m

Properties:

► Encryption and decryption are inverse operations:

Decsk(Encpk(m)) = m

► Secrecy: ciphertext reveals nothing about plaintext

► Computationally hard to decrypt without secret key

► The point:

► Anybody with your public key can send you a secret message!
Solves key distribution problem.

Modular Arithmetic Review

Division: Let n,d,q,r be integers.

ln/d j = q

n = qd + r

n ≡ r mod d

0 ≤ r < d

Facts about remainders/modular arithmetic:

Add: (a mod d) + (b mod d) ≡ (a + b) mod d

Subtract: (a mod d) − (b mod d) ≡ (a − b) mod d

Multiply: (a mod d) · (b mod d) ≡ (a · b) mod d

Modular Inverse: “Division” for modular arithmetic

If a · b mod d = c mod d we would like c/b mod d = a mod d.

Let’s try this: let a = 3, b = 2, and d = 4

Modular Inverse: “Division” for modular arithmetic

If a · b mod d = c mod d we would like c/b mod d = a mod d.

Let’s try this: let a = 3, b = 2, and d = 4

This doesn’t quite work, it says 3 = 1 mod 4!

a
b

Fix: For rationals, = a · 1 1
b b

b · = 1.

b
Define modular inverse: 1 means b− 1 mod d.

► b− 1 mod d is a value such that b · b− 1 ≡ 1 mod d.

► Example: 3 · (3− 1 mod 5) ≡

Modular Inverse: “Division” for modular arithmetic

If a · b mod d = c mod d we would like c/b mod d = a mod d.

Let’s try this: let a = 3, b = 2, and d = 4

This doesn’t quite work, it says 3 = 1 mod 4!

a
b

Fix: For rationals, = a · 1 1
b b

b · = 1.

b
Define modular inverse: 1 means b− 1 mod d.

► b− 1 mod d is a value such that b · b− 1 ≡ 1 mod d.

► Example: 3 · (3− 1 mod 5) ≡ 3 · 2 ≡ 1 mod 5.

► If gcd(a,d) = 1 then a− 1 is well defined.

► Efficient to compute.

Modular exponentiation and discrete log

Modular exponentiation

► Over the integers, ga = g · g · g ...g

► ga mod d it’s the same:
ga mod d = (((g mod d) · g mod d) ...g mod d) mod d

► Efficient to compute using the binary representation of a.

Modular exponentiation and discrete log

Modular exponentiation

► Over the integers, ga = g · g · g ...g

► ga mod d it’s the same:
ga mod d = (((g mod d) · g mod d) ...g mod d) mod d

► Efficient to compute using the binary representation of a.

“Inverse” of modular exponentiation: Discrete log

► Over the reals, if ba = y then logb y = a.

Modular exponentiation and discrete log

Modular exponentiation

► Over the integers, ga = g · g · g ...g

► ga mod d it’s the same:
ga mod d = (((g mod d) · g mod d) ...g mod d) mod d

► Efficient to compute using the binary representation of a.

“Inverse” of modular exponentiation: Discrete log

► Over the reals, if ba = y then logb y = a.

► Define discrete log similarly:
Input b,d, y , discrete log is a such that ba ≡ y mod d.

Modular exponentiation and discrete log

Modular exponentiation

► Over the integers, ga = g · g · g ...g

► ga mod d it’s the same:
ga mod d = (((g mod d) · g mod d) ...g mod d) mod d

► Efficient to compute using the binary representation of a.

“Inverse” of modular exponentiation: Discrete log

► Over the reals, if ba = y then logb y = a.

► Define discrete log similarly:
Input b,d, y , discrete log is a such that ba ≡ y mod d.

► No known polynomial-time algorithm to compute this.

Symmetric cryptography

AESk(m)

Public key crypto idea # 1: Key exchange
Solving key distribution without trusted third parties

AESk(m)

Key Exchange

k = shared secret k = shared secret

Textbook Diffie-Hellman Key Exchange

Public Parameters

p a prime

g an integer modp

Key Exchange

Textbook Diffie-Hellman Key Exchange

Public Parameters

p a prime

g an integer modp

Key Exchange

ga mod p

gb mod p

gab mod pgab mod p

Note: (ga)b mod p = gab mod p = gba mod p(gb)a mod p.

Diffie-Hellman Security

ga mod p

gb mod p

gab mod pgab mod p

► Most efficient algorithm for passive eavesdropper to break:

Compute discrete log of public values ga mod p or gb mod p.

Diffie-Hellman Security

ga mod p

gb mod p

gab mod pgab mod p

► Most efficient algorithm for passive eavesdropper to break:

Compute discrete log of public values ga mod p or gb mod p.

► Parameter selection: p should be ≥ 2048 bits.

Diffie-Hellman Security

ga mod p

gb mod p

gab mod pgab mod p

► Most efficient algorithm for passive eavesdropper to break:

Compute discrete log of public values ga mod p or gb mod p.

► Parameter selection: p should be ≥ 2048 bits.

► Do not implement this yourself ever: discrete log is only hard

for certain choices of p and g.

► Best current choice: Use elliptic curve Diffie-Hellman.

(Similar idea, more complicated math.)

Diffie-Hellman insecure against man-in-the-middle

Alice

Mallory

Bob

ga mod p

Mallory
gb mod p

Active adversary can modify Diffie-Hellman messages in transit and

learn both shared secrets.

Allows transparent MITM attack against later encryption.

Diffie-Hellman insecure against man-in-the-middle

Alice

gan

Mallory

Bob

gmb

ga mod p gm mod p

Mallory
gn mod p gb mod p

Active adversary can modify Diffie-Hellman messages in transit and

learn both shared secrets.

Allows transparent MITM attack against later encryption.

Fix: Need to authenticate messages.

Computational complexity for integer problems

► Integer multiplication is efficient to compute.

► There is no known polynomial-time algorithm for

general-purpose factoring.

► Efficient factoring algorithms for many types of integers. Easy

to find small factors of random integers.

► Modular exponentiation is efficient to compute.

► Modular inverses are efficient to compute.

Idea # 2: Key encapsulation/public-key encryption
Solving key distribution without trusted third parties

AESk(m)

c = KEM(k)

k = DEC(c)

Practice

Using the Diffie-Hellman Key Exchange, find the shared key between Kim and John

if the prime, P, is 23 and primitive modulo, g, is 5. Note that Kim’s secret key, a, is 4

and John’s secret key, b, is 3.

Group Exercise
Using the Diffie-Hellman Key Exchange, find the shared key between Alice and Bob if the

prime, P, is 11 and primitive modulo, g, is 2. Note that Alice’s secret key, a, is 4 and Bob’s

secret key, b, is 5.

Textbook RSA Encryption
[Rivest Shamir Adleman 1977]

Public Key pk

N = pq modulus

e encryption exponent

Secret Key sk

p,q primes

d decryption exponent

(d = e−1 mod (p − 1)(q − 1) = e−1 mod φ(N))

pk = (N ,e)

c = Encpk(m) = me mod N

m = Decsk(c) = cd mod N

Dec(Enc(m)) =med mod N ≡ m1+kφ(N) ≡ m mod N by

Euler’s theorem (mφ(N) ≡ 1 mod N).

RSA Security

► Best algorithm to break RSA: Factor N and compute d .

► Factoring is not efficient in general.

► Current key size recommendations: N should be ≥ 2048 bits.

► Do not ever implement this yourself. Factoring is only hard for

some integers, and textbook RSA is insecure.

Textbook RSA is super insecure

Unpadded RSA encryption is homomorphic under multiplication.

Textbook RSA is super insecure

Unpadded RSA encryption is homomorphic under multiplication.

Attack: Malleability

Given a ciphertext c = Enc(m) = me mod N, attacker can forge

ciphertext Enc(ma) = cae mod N for any a.

Textbook RSA is super insecure

Unpadded RSA encryption is homomorphic under multiplication.

Attack: Malleability

Given a ciphertext c = Enc(m) = me mod N, attacker can forge

ciphertext Enc(ma) = cae mod N for any a.

Attack: Chosen ciphertext attack

Given a ciphertext c = Enc(m) for unknown m, attacker asks for

Dec(cae mod N) = d and computes m = da− 1 mod N .

Textbook RSA is super insecure

Unpadded RSA encryption is homomorphic under multiplication.

Attack: Malleability

Given a ciphertext c = Enc(m) = me mod N, attacker can forge

ciphertext Enc(ma) = cae mod N for any a.

Attack: Chosen ciphertext attack

Given a ciphertext c = Enc(m) for unknown m, attacker asks for

Dec(cae mod N) = d and computes m = da− 1 mod N .

Fix: always use padding on messages.

RSA PKCS #1 v1.5 padding
Most common implementation choice even though it is insecure

pad(m) = 00 02 [random padding s t r i n g] 00 [m]

► Encrypter pads message, then encrypts padded messageusing

RSA public key: Encpk(m) = pad(m)e mod N

► Decrypter decrypts using RSA private key, strips off padding

to recover original data: Decsk(c) = cd mod N = pad(m)

PKCS#1v1.5 padding is vulnerable to a number of padding

attacks. It is still commonly used in practice.

Idea #3: Digital Signatures

m,Sign(m)

Verify Sign(m)

Bob wants to verify Alice’s signature using only a public key.

► Signature verifies that Alice was the only one who could have

sent this message.

► Signature also verifies that the message hasn’t been modified

in transit.

Digital Signatures

► Signing: (secret key, message) → signature

Signsk(m) = s

► Verification: (public key, message, signature) → bool

Verifypk (m,s) = true | false

Signature properties:

► Verification of signed message succeeds:

Digital Signatures

► Signing: (secret key, message) → signature

Signsk(m) = s

► Verification: (public key, message, signature) → bool

Verifypk (m,s) = true | false

Signature properties:

► Verification of signed message succeeds:

► Verifypk(m,Signsk(m)) = true

► Unforgeability: Can’t compute signature for message m that

verifies with public key without corresponding secret key.

► The point:

► Anybody with your public key can verify that you signed
something!

Textbook RSA Signatures
[Rivest Shamir Adleman 1977]

Public Key pk

N = pq modulus

e public exponent

Secret Key sk

p,q primes

d private exponent
(d = e− 1 mod (p − 1)(q − 1))

pk = (N ,e)

m, s = Sign(m) = md mod N

Verify(m,s): m = se mod N

Works for the same reason RSA encryption does.

Textbook RSA signatures are super insecure

Attack: Signature forgery

1. Attacker wants Sign(x).

2. Attacker computes z = xy e mod N for some y .

3. Attacker asks signer for s = Sign(z) = z d mod N .

4. Attacker computes Sign(x) = sy− 1 mod N .

Countermeasures:

► Always use padding with RSA.

► Sign hash of m and not raw message m.

Positive viewpoint:

► Blind signatures: Lots of neat crypto applications.

RSA PKCS #1 v1.5 signature padding
Most widely used padding scheme in practice

pad(m) = 00 01 [FF FF FF . . . FF FF] 00 [d a t a H(m)]

► Signer hashes and pads message, then signs padded message

using RSA private key.

► Verifier verifies using RSA public key, strips off padding to

recover hash of message.

Q: What happens if a decrypter doesn’t correctly check padding

length?

A: Bleichenbacher low exponent signature forgery attack.

https://www.youtube.com/watch?v=2xspZfXI_nY

Bleichenbacher RSA Signature Forgery

pad(m) = 00 01 [FF FF FF . . . FF FF] 00 [d a t a H(m)]

If victim shortcuts padding check: just looks for padding format

but doesn’t check length, and signature uses e = 3:

1. Construct a perfect cube over the integers, ignoring N, such

that

x = 0001FF ...FF 00[hash of forged message][garbage]

2. Compute s such that s3 = x .

(Easy way: set garbage to zero and take cube root, i.e.,
s = rxl1/3.)

3. Lazy implementation validates bad signature!

Security for RSA signatures

► Same as RSA encryption.

► Recommendation: Use ECDSA or ed25519 instead.

Putting it all together
How public-key cryptography is used in practice

ga

gb

s = Sign(ga,gb)

AESk(m)

k = gab

Verify(s)
k = gab

► Diffie-Hellman used to negotiate shared session key.

► Alice verifies Bob’s signature to ensure that key exchange was

not man-in-the-middled.

► Shared secret used to symmetrically encrypt data.

Public-key cryptography and quantum computers
Right now, all public-key cryptography used in the real world

involves three “hard” problems:

► Factoring

► Discrete log mod primes

► Elliptic curve discrete log

All of these problems can be solved efficiently by a general-purpose

quantum computer.

Big standardization effort now to develop replacements:

► Lattice-based cryptography

► Multivariate cryptography

► Hash-based signatures

► Supersingular isogeny Diffie-Hellman

These will likely be used more in the real world in the next few

years.

