CSE 127: Introduction to
Security

TLS and Secure Channels

George Obaido
UCSD

Spring 2022

Some material from Nadia Heninger, Deian Stefan, Dan Boneh, Stefan Savage

Reminder: Cryptographic primitives

Symmetric crypto Public-key crypto

Confidentiality Symmetric Public-key
encryption encryption
(e.g. AES) (e.g. RSA)

Integrity/Authenticity pMACs Digital signatures

Reminder: Network Attacker Threat Model

Network Attacker:
» Controls infrastructure: Routers, DNS
» Eavesdrops, injects, drops, or modifies packets

Examples:
* WiFi at internet cafe
* Internet access at hotels

Goal: Establish a secure channel to a host that ensures
* Confidentiality and Integrity of messages
« Authentication of the remote host

Common cryptographic network protocols

» TLS(Transport Layer Security)

» Used to provide an encryption wrapper around HTTP to
make HTTPS, and for many other application layer
protocols.

» Security goals: Authenticate server, confidentiality and
integrity of traffic

* SSH (Secure Shell)

» Use to access remote machines
» Security goals: Authenticate server and client,
confidentiality and integrity of traffic

* IPsec (Internet Protocol Security)

* Provides an encrypted, authenticated alternative to IP

* Commonly used for VPNs (Virtual Private Networks)

» Security goals: client and server authentication,
authenticate headers, optionally encrypt headers,
ensure confdentiality and integrity of payloads

Constructing a secure encrypted channel

» To ensure confidentiality and integrity: Encrypt and MAC data

¢ = AESk.(m), t = MACy,(c)

v

Constructing a secure encrypted channel

» To ensure confidentiality and integrity: Encrypt and MAC data

» To negotiate shared symmetric keys: Diffie-Hellman key
exchange. Key Derivation Function (KDF) maps shared secret
to symmetric key.

A

¢ = AESk.(m), t = MACy,(c)

\
4

ke, km = KDF(g?) ke, km = KDF(g®)

Constructing a secure encrypted channel

» To ensure confidentiality and integrity: Encrypt and MAC data

» To negotiate shared symmetric keys: Diffie-Hellman key
exchange. Key Derivation Function (KDF) maps shared secret
to symmetric key.

» Toensure authenticity of endpoints: Digital Signatures

ga

gb

A

RSApubg , Signg (g2, g®)
¢ = AES, (m), t = MAC,,(c)

A

4

ke, km = KDF(g?) ke, km = KDF(g®)

Constructing a secure encrypted channel
» Toensure confidentiality and integrity: Encrypt and MAC data

» Tonegotiate shared symmetric keys: Diffie-Hellman key
exchange. Key Derivation Function (KDF) maps shared secret
to symmetric key.

» Toensure authenticity of endpoints: Digital Signatures

» Toensure an adversary can’t reuse a signature later, add
some random unique values (“nonces”)

g2, randomra

~

gP,random r,

A

RSApubg, Signg (g2, g®, ra,)
¢ = AESy.(m),t = MAC,,(c)

A

4

ke, km = KDF(g®, ra,) Ke, km = KDF(g®, ra, ')

This is not exactly what TLS looks like, but it’s similar.

Constructing a secure encrypted channel
» Toensure confidentiality and integrity: Encrypt and MAC data

» Tonegotiate shared symmetric keys: Diffie-Hellman key
exchange. Key Derivation Function (KDF) maps shared secret
to symmetric key.

» Toensure authenticity of endpoints: Digital Signatures

» Toensure an adversary can’t reuse a signature later, add
some random unique values (“nonces”)

g2, randomra

~

gP,random r,

A

RSApubg, Signg (g2, g®, ra,)
¢ = AESy.(m),t = MAC,,(c)

A

\
4

ke, km = KDF(g®, ra,) Ke, km = KDF(g®, ra, ')

How does Alice know to trust Bob’s public signing key?

Public Key Infrastructure: Establishing Trust in Keys

Ways to establish trust in keys:

* Meetin person to exchange keys.
* Not practical at scale over the internet

Public Key Infrastructure: Establishing Trust in Keys

Ways to establish trust in keys:
* Fingerprint verification
» Verify a cryptographic hash of a public key through a

separate channel, or “trust on first use” (TOFU).
» Thisis used by SSH for host keys.

$ ssh elk.sysnet.ucsd.edu

The authenticity of host ’elk.sysnet.ucsd.edu (137.110.222.162)’ can’t be
established.

ED25519 key fingerprint is SHA256:rI/PqZezDo18EbK8U8/HXesu07iCoNUGa+8r3t3qGxw.
This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])?

Public Key Infrastructure: Establishing Trust in Keys

Ways to establish trust in keys:
* Fingerprint verification
» Verify a cryptographic hash of a public key through a
separate channel, or “trust on first use” (TOFU).
* This is used by SSH for host keys.
» Thisis also used by encrypted messaging apps like Signal

vaiDs w4075

€ Verify identity 7 € Verify safety numbers <

Their identity (they read):

05 d9 Oe f7 e3 f6 52 cb

31 1d e1 79 6b 81 fb 8d

19 b9 84 c5 ea 1e 50 4a

9b 24 e4 c7 ea 91 a7 1d

1

2 =3

Your identity (you read):

05 40 8b d4 6c 57 22 04
Oc a5 fa 44 76 Oe 85 c5
67 59 7e 57 ea 22 de 8d
f4 36 79 02 bc 17 56 2e
5b

Public Key Infrastructure: Establishing Trust in Keys

Ways to establish trust in keys:

» Certificate Authorities

+ Acertificate authority (CA) is a kind of
commercial trusted intermediary.

» Certificate Authorities verify public keys and sign them in
exchange for money.

» If you trust the certificate authority, you transitively trust
the keys it signs.

» Thisis used for TLS, software signing keys.

Public Key Infrastructure: Establishing Trust in Keys
Ways to establish trust in keys:
* Web of Trust (e.g., PGPG)
* In aweb of trust, you establish trust in intermediaries of
your choice.
» You then transitively trust the keys they sign.

$ gpg --edit-key dickey®@invisible-island.net
gpg (GnuPG) 2.2.29; Copyright (C) 2021 Free Software Foundation, Inc. This is free

software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
pub dsal024/702353E0F7E48EDB

created: 2004-01-05 expires: 2022-07-05 usage: SCtrust: unknown

validity: unknown

sub elg1024/0296C3D9E4374AE1

created: 2004-01-05 expires: never usage: E
[unknown] (1). ThomasDickey <dickey@invisible-island.net> gpg> trust
pub dsa1024/702353E0F7E48EDB

created: 2004-01-05 expires: 2022-07-05 usage: SCtrust: unknown

validity: unknown
sub elg1024/0296C3D9E4374AE1
created: 2004-01-05 expires: never usage: E
[unknown] (1). Thomas Dickey <dickey@invisible-island.net>

Please decide howfar you trust this user to correctly verify other users’ keys (by looking at
passports, checking fingerprints from different sources, etc.)
I don’t know or won’t say
I do NOT trust
I trust marginally
I trust fully
I trust ultimately
back to the main menuYour decision?

g A wN e

mailto:dickey@invisible-island.net
mailto:dickey@invisible-island.net
mailto:dickey@invisible-island.net

Amore modern and practical WoT: Keybase

G (08 hipsihepaseio He @ ne = 7 .
cravens.birthdays
“ miennox, su; 728 PM cravena 1133 AM - Yest
e e o ' Buy yourself a new sweatshirt!
gs
& cravenc 7270
0 o 5 v

s Piie

deian cravens.birthdays Wed
Deian Stefan

cravenc
thanks!
. drcraven " astera
0 marcomssens s marcovessens Maybe a bag for his head too &
cravenc
HAHA. &
cravena # |

P vuwUw

oo Disclaimer: Available on Keybase.

https://keybase.io/

TLS: Transport Layer Security
* TLS provides an encrypted channel for application data.

* Used for HTTPS: HTTP inside of a TLS session
» Used to be called SSL (Secure Sockets Layer) in the 90s.

SSL 1.0 Terribly insecure; never released.

SSL 2.0 Released 1995; terribly insecure,
deprecated in 2011

SSL 3.0 Released 1996; insecure, deprecated in
2015.

TLS 1.0 Released 1999; deprecated in 2020.

TLS 1.1 Released 2006; deprecated in 2020.

TLS 1.2 Released 2008. Ok.

TLS1.3 Standardized in August 2018 and is being
rolled out now; major change from TLS 1.2.

TLS 1.2 with Diffie-Hellman Key Exchange
Step 1: The client (browser) tells the server what kind of
cryptography it supports.

client hello: client random

[list of cipher suites]

Cipher suites: list of options like:
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

This says to use
« elliptic curve Diffie-Hellman for key exchange
* RSAdigital signatures
» 128-bit AESfor symmetric encryption
* GCM (Galois Counter Mode) AES mode of operation
* SHA-256 for hash function

TLS 1.2 with Diffie-Hellman Key Exchange
Step 1: The client (browser) tells the server what kind of
cryptography it supports.

client hello: client random

[list of cipher suites]

Cipher suites: list of options like:
TLS_ECDHE_RSA_WITH_AES_128 GCM_SHA256

Server cipher suite confguration can be confusing and difficult for
sysadmins. Many insecure options like

TLS_DHE_RSA WITH_DES_CBC_SHA

or

TLS_NULL WITH_NULL_NULL

Subtle protocol errors around cipher suite negotiation.

TLS 1.2 with Diffie-Hellman Key Exchange

Step 2: The server tells the client which kind of cryptography
it wishes to use.

client hello: client random
-

[list of cipher suites]

-
szrver hello: server random, [cipher suite]

TLS 1.2 with Diffie-Hellman Key Exchange

Step 3: The server sends over its certifcate which contains
the server’'s public key and signatures from a certiflcate
authority.

client hello: client random
-

[list of cipher suites]

, —P
server hello: server random, [cipher suite]

4 _ .
certificate = public RSA key + CA signatures
-«

Certificates and Certificate Authorities in TLS
Website public keys are encoded into certificates.
Certificates signed by CAs.

Browsers come with set of trusted CAs.

To verify a certificate, browsers verify chain of digital
certificates back to trusted root CA.

Browser

Alice Server Bob

PK and
proof “l am Bob”

issue Cert with SKc, :
Bob’s
Bob’s ¥ key is PK
! key is PK

Certificates typically valid for 3 months to multiple years.

Sample certificate

Coertiffoate

mail.google.com

Issued by: Google Internet Authority G3

Expires: Wednesday, June 20, 2018 at 6:25:00 AM Pacific
Daylight Time

@ This certificate is valid

v Details

Country
State/Province
Locality
Organization
Common Name

us

California
Mountain View
Google Inc
mail.google.com

Country
Organization
Common Name

Serial Number
Version
Signature Algorithm

us
Google Trust Services
Google Internet Authority G3

3495829599616174946
3
SHA-256 with RSA Encryption

Public Ke y fc
Algorithm
Parameters
Public Key

Key Size

Key Usage

Signature

Elliptic Curve Public Key (1.2.840.10045.2.1)
Elliptic Curve secp256r1 (1.2.840.10045.3.1.7)
65 bytes : 04 D5 63 FC 4D F9 4E 91 ...
256 bits

Encrypt, Verify, Derive

256 bytes : 3F FE 04 7B BEB0 321D ...

E USERTrust RSA Certification Authority
t =] InCommon RSA Server CA

e cse.ucsd.edu

Cortifiectte
Hoswdisrd

cse.ucsd.edu

Issued by: InCommon RSA Server CA

‘.| Expires: Monday, January 4, 2021 at 3:59:59 PM Pacific
Standard Time

@ This certificate is valid

¥ Details
Subject Name
Country
Postal Code
State/Province
Locality
Street Address
Organization
Organizational Unit
Common Name

Issuer Name
Country
State/Province
Locality
Organization

Or izati | Unit

us

92093

CA

La Jolla

9500 Gilman Drive

University of California, San Diego
ucso

cse.ucsd.edu

us

Mi

Ann Arbor
Internet2
InC:

Common Name
Serial Number

Version
Signature Algorithm

InCommon RSA Server CA

36 F6 DC 47 6F 09 25 8E 94 EF BF 36 65 4F
E8 98

3

SHA-256 with RSA Encryption
(1.2.840.113549.1.1.11)

] USERTrust RSA Certification Authority
t [l InCommon RSA Server CA
s [cse.ucsd.edu

Xpires: Monday, January 4, 20271 at 3:99:59 PM Pacific
Standard Time
@ This certificate is valid

Certifiectte
Aonadond

S

¥ Details
Subject N
Country US
Postal Code 92093
State/Province CA
Locality La Jolla
Street Address 9500 Gilman Drive
Organization University of California, San Diego
Organizational Unit UCSD
Common Name cse.ucsd.edu

r Name
Country US
State/Province Ml
Locality Ann Arbor
Organization Internet2
Organizational Unit InCommon
Common Name InCommon RSA Server CA

Serial Number 36 F6 DC 47 6F 09 25 8E 94 EF BF 36 65 4F
E8 98
Version 3
Signature Algorithm SHA-256 with RSA Encryption
(1.2.840.113549.1.1.11)

Who are we trusting?

] USERTrust RSA Certification Authority
t [l InCommon RSA Server CA
s [cse.ucsd.edu

Xpires: Monday, January 4, 20271 at 3:99:59 PM Pacific
Standard Time
@ This certificate is valid

Certifiectte
Aowdond

S

¥ Details

Subject Name
Country US
Postal Code 92093
State/Province CA
Locality La Jolla
Street Address 9500 Gilman Drive
Organization University of California, San Diego
Organizational Unit UCSD
i Common Name cse.ucsd.edu I
Issuer Name
Country US
State/Province Ml
Locality Ann Arbor
Organization Internet2

Organizational Unit InCommon
Common Name InCommon RSA Server CA

Serial Number 36 F6 DC 47 6F 09 25 8E 94 EF BF 36 65 4F
E8 98
Version 3
Signature Algorithm SHA-256 with RSA Encryption
(1.2.840.113549.1.1.11)

Who are we trusting?

Who is this cert for?

Key ID

Extension

Critical

1E 05 A3 77 8F 6C 96 E2 5B 87 4B A6 B4 86 AC
7100 0CE7 38

Subject Alternative Name (2.5.28.17)
NO

DNS Name
DNS Name
DNS Name
DNS Name
DNS Name
DNS Name

cse.ucsd.edu
cs.ucsd.edu
www-cs.ucsd.edu
www-cse.ucsd.edu
www.cs.ucsd.edu
www.cse.ucsd.edu

Critical
Policy ID #1
Qualifier 1D #1

CPS URI

Policy ID #2

Critical

Critical
Method #1
URI

Method #2

URI

Certificate Policies (2.5.29.32)

NO

{1.3.6.1.4.1.5923.1.4.3.1.1)

Certification Practice Statement (1.3.6.1.5.5.7.2.1)

https://www.incommon.org/cert/repository/
cps ssl.pdf

(2.23.1401.2.2)

CRL Distribution Points (2.5.28.31)
NO

http://cri.incommon-rsa.org/
InCommonRSAServerCA.crl

Certificate Authority Information Access
(1.3.6.1.55.7.1.1)

NO
CA Issuers (1.3.6.1.5.5.7.48.2)

http://crt.usertrust.com/
InCommonRSAServerCA 2.crt

Online Certificate Status Protocol
(1.3.6.1.5.5.7.48.1)

http://focsp.usertrust.com

Who is this cert for?

Country
State/Province
Locality
Organization
Organizational Unit
Common Name

Serial Number

Version
Signature Algorithm

Parameters
Not Valid Before

Not Valid After

us

Mi

Ann Arbor

Internet2

InCommon

InCommon RSA Server CA

36 F6 DC 47 6F 09 25 8E 94 EF BF 36 65 4F
E8 98

3

SHA-256 with RSA Encryption
{1.2.840.113549.1.1.11)

None

Thursday, January 4, 2018 at 4:00:00 PM Pacific
Standard Time

Monday, January 4, 2021 at 3:59:59 PM Pacific
Standard Time

Algorithm
Parameters
Public Key
Exponent
Key Size
Key Usage

Signature

RSA Encryption (1.2.840.113549.1.1.1)
None

256 bytes : FAF9 1A 089286 9C 7B ...
65537

2,048 bits

Encrypt, Verify, Wrap, Derive

256 bytes : 6F 62 36 46 B7 4328 04 ...

Critical
Usage

Key Usage (2.5.29.15)
YES
Digital Signature, Key Encipherment

CSE’s

pub key info

Key D 1EOQO5 A3 77 8F 6C 96 E2 5B 87 4B A6 B4 86 AC
7100 0CE7 38

Extension Subject Alternative Name (2.5.29.17)
Critical NO
DNS Name cse.ucsd.edu
DNS Name cs.ucsd.edu
DNS Name www-cs.ucsd.edu
DNS Name www-cse.ucsd.edu
DNS Name www.cs.ucsd.edu
DNS Name www.cse.ucsd.edu

Extension Certificate Policies (2.5.29.32)
Critical NO
Policy ID #1 (1.3.6.1.4.1.56923.1.4.3.1.1)
Qualifier ID #1 Certification Practice Statement (1.3.6.1.5.5.7.2.1)
CPS URI https://fwww.incommon.org/cert/repository/
cps ssl.pdf
Policy 1D £2 (223140122

Extension CRL Distribution Points (2.5.29.31)
Critical NO

URI http://crl.incommon-rsa.org/
InCommonRSAServerCA.crl

Certificate Authority Information Access
{1.3.6.1.5.5.7.11)

Critical NO
Method #1 CAlssuers (1.3.6.1.5.5.7.48.2)
UR! http://crt.usertrust.com/
InCommonRSAServerCA 2.crt

Method #2 Online Certificate Status Protocol
(1.3.6.1.5.5.7.48.1)

URI http://ocsp.usertrust.com

Where we should
check for revocation

information

Revocation

* Problem: keys get compromised

» Attacker with a key can impersonate you and read
messages encrypted to you

» Key expiration helps, but not enough

» CAand PGP PKis support revocation
* “l, Alice, revoke my public key ... do not use it.”
» Signs revocation with her private key
» Others can verify Alice’s signature, stop using key

Root CAson OS X

Keychaing
GlobalSign Root CA
u login Root certificate it
w Local ltems Explres: Friday, January 28, 2028 at 4:00:00 AM Pacific Standard Time
@ System & This cortificato s valit
| systom Roots
Name Kind Expites Keychain
(5 Entrust Root Certification Authority - G2 cortificate Dec7,2020 3t 9:55:56 AMSystom Roots
[Entrust.net Certification Authority (2048) Dec 24, 2019 3t 10:20:51.. System Roots
[Entrust.net Cortfication Autnority (2048) 24,2029 3t 71512 AM System Roots
[l oPKI Roat Certification Autharity Dec 19, 2034 3t 6:31:27.. System Roots
5 Federal Common Policy CA Do 1,2030 st 8:45:27 AM _ System Roots
2] GeoTrust Global CA certificate May 20, 2022 at 9:00:00. System Roots
i GeTrust Primary Cartication Authorty cortiicato Ju 16, 2036 3t 4:60:59 PM_ System Roots
53 GooTrust Primary Cartiication Authorty - G2 certificato Jan 16, 2038 at 359:69... System Roots
[GeoTrust Primary Cartification Authority - G3 certificate. Dec 1, 2037 at 3:59:59 PM System Roots.
[Global Chambersign Roat certificate Sep 30,2037 3t 9:14:18... System Roots
Category 5 Global Chambrsign Root - 2008 certificate 31,2038 3t 5:31:40 AM_System Roots
A Altems [Clobalsign certificate Mar 18, 2029 at 3:00:00... System Roots
L Pusvaisds [Globaisign certifcate Jan 18,2038 at 7:14:07 PM System Roots
LJ Globaisign certficate System Roots
Secure Notes [Globaisign System Roots
L My Certificates
1 Keys [Go Daddy Class 2 Certification Authority Jun 29,2034 81 10:06:20... System Roots
| O certificates [Go Daddy Root Certificate Authority - G2 Dec 31,2037 st 3:50:59... System Roots
i Government Root Certfication Authority Dec 31,2037 2t 75950 System Roots
() Hellenic Academic and Research institutions RootCA 2011 Dec 1,2031 8t 5:40:52 AM _ System Roots
5 Hongkong Past Root CA1 May 14,2023 3t 95229 System Roots
5 IdenTrust Commercial Root CA 1 Jan 16,2034 3t 10:2:23... System Roots
5 denTrust Pusic Sactor Root CA 1 Jan 16,2034 3t 95332 System Roots
51 1SRG Root X1 Jun 4, 2035 3t 4:04:38 AM_System Roots
[tzenpecom Dec 13, 2037 at 12:27:26... System Roots
[tronpe.com cer Oec 13,2037 at 12:27:25..System Roots
[KISA RootCA 1 certificate Aug 24, 2025 3t 105:46. Systom Roots
@ i 162 Htems

Which CA can issue a certificate for fbi.gov?
Which CA can issue a certificate for google.com?

Man-in-the-middle attack using rogue cert

l ClientHello attacker ClientHello bank

[k
@ ServerCert (rogue) ﬁ ServerCert (Bank)

(cert for Bank by a valid CA)

SSL key exchange SSL key exchange
ks ky kz k;
HTTP data enc with k, 5 HTTP data enc with k, 5

Attacker proxies data between user and bank.

Sees all traffic and can modify data at will.

https://www.microsoft.com/en-us/research/publication/detection-of-rogue-certi%EF%AC%81cates-from-trusted-certi%EF%AC%81cate-
authorities-using-deep-neural-networks/

CA Hacks and Vulnerabilities
There is along history of CAs getting hacked or doing the
wrong thing.
+ 2011: Comodo and DigiNotar CAs hacked, used to issue
fraudulent certificates for Hotmail, Gmail, Skype, Yahoo
Mail, Firefox...
» Fraudulent certifcates later used in man-in-the-middle
attack against Iran.

» 2013: TurkTrustissued fraudulent certifcate for Gmail.
» 2014: Indian NIC issue certs for Google and Yahoo!
+ 2016: WoSign issues cert for GitHub.

Mitigations:
+ Certificate pinning.
» Hard code certificates for some sites in browser.
+ Certificate Transparency.

» Public append-only log of certificate issuances to track
fraudulent certs.

TLS 1.2 with Diffie-Hellman Key Exchange

Step 3: The server sends over its certifcate which contains
the server’s public key and signatures from a certifcate
authority.

client hello: client random

, . . >
[list of cipher suites]

, —p
server hello: server random, [cipher suite]

<
certifcate = public RSA key + CA signatures
-

TLS 1.2 with Diffie-Hellman Key Exchange

Step 4: The server initiates a Diffie-Hellman key exchange.

client hello: client random

. , , >
[list of cipher suites]

- —
server hello: server random, [cipher suite]

- - -
certifcate = public RSA key + CA sighatures

server kex: p, g, 92, Signrsakey(p, 9,9?2)

«

To protect against man-in-the-middle attacks, the server
uses its public key to sign the Diffie-Hellman key exchange.

TLS also allows client authentication, but this is rare.

TLS 1.2 with Diffie-Hellman Key Exchange

Step 5: The client responds with its half of the Diffie-Hellman
key exchange.

client hello: client random

. , , >
[list of cipher suites]

- —p-
server hello: server random, [cipher suite]

< , .
certifcate = public RSA key + CA signatures

server kex: p, g, g?, Signrsakey(p, 9,9?2)

-
client kex: gb

TLS 1.2 with Diffie-Hellman Key Exchange
Step 6: The client and server derive symmetric encryption
keys from the shared secret using a key derivation function.

client hello: client random

. . - >
[list of cipher suites]

- —P>
server hello: server random, [cipher suite]

-
certifcate = public RSA key + CA signatures

server kex: p, g, g2, Signrsakey(p, 9,9?2)

-
client kex: gb
b p KDF(g2,
KDF(g*, random) —
random) — K, km, ke
kmc,kmsa ke

TLS 1.2 with Diffie-Hellman Key Exchange
Step 7: The client and server verify the integrity of the
handshake using the MAC keys they have derived.

client hello: client random

. , , >
[list of cipher suites]

- —p-
server hello: server random, [cipher suite]

< , .
certifcate = public RSA key + CA signatures

server kex: p, g, g?, Signrsakey(p, 9,9%) 2
-
client kex: gb

" > KDF(g?,

KDF(g=, random) —

random) — : —»

ki km. . ke server fnished: MACy, (dialog) Mo BiMs» 7€
c 1 s 1 4

client fnished: MACy,,_(dialog)

TLS 1.2 with Diffie-Hellman Key Exchange
Step 8: The client and server can now send encrypted
application data (e.g. HTTP) using their secure channel.

client hello: client random

. , , >
[list of cipher suites]

- —p-
server hello: server random, [cipher suite]

< , .
certifcate = public RSA key + CA signatures

server kex: p, g, g?, Signrsakey(p, 9,9?2)

«
client kex: gb
> KDF(g2,
KDF@*, client fnished: MACy,, (dialog) random) —
random) — - - ke ke K
K. , K. » ke server fnished: MACy, (dialog) Me TMs» 1€

Enc.(request)
< >

TLS 1.2 with RSA Key Exchange

TLSversions prior to 1.3 also supported using RSApublic
key encryption to share the premaster secret (shared secret
master key).

client hello: client random

[supported cipher suites]

Y

TLS 1.2 with RSA Key Exchange

TLSversions prior to 1.3 also supported using RSApublic
key encryption to share the premaster secret (shared secret
master key).

client hello: client random
-

[supported cipher suites]

-
server hello: server random, [RSA cipher suite]

-
ertifcate = RSA pubkey k,043 + CA signatures
-

TLS 1.2 with RSA Key Exchange

TLSversions prior to 1.3 also supported using RSApublic
key encryption to share the premaster secret (shared secret
master key).

client hello: client random

-
[supported cipher suites]

-
server hello: server random, [RSA cipher suite]

-
ertifcate = RSA pubkey k,45 + CA signatures

-«
client key exchange: RSAency,q, (pms)

client fnished: Authy__(dialog)

p KDF(pms,
KDF(pms, random) —
random) — ke ke K
m¢ s Kmg, Ke

kme, kms, ke

TLS 1.2 with RSA Key Exchange

TLSversions prior to 1.3 also supported using RSApublic
key encryption to share the premaster secret (shared secret
master key).

client hello: client random
-

[supported cipher suites]

-
server hello: server random, [RSA cipher suite]

-
ertifcate = RSA pubkey k,45 + CA signatures

-«
client key exchange: RSAency,q, (pms)

client fnished: Authy__(dialog)

- - KDF(pms,
KDF(pms, server fnished: Authy,, (dlalogr random) —>
random) — ¢ ke Kon. . e

kme, kms, ke

TLS 1.2 with RSA Key Exchange

TLSversions prior to 1.3 also supported using RSApublic
key encryption to share the premaster secret (shared secret
master key).

client hello: client random
-

[supported cipher suites]

-
server hello: server random, [RSA cipher suite]

-
ertifcate = RSA pubkey k,45 + CA signatures

-«
client key exchange: RSAency,q, (pms)

client fnished: Authy__(dialog)

- - KDF(pms,
KDF(pms, server fnished: Authy,, (dlalogr random) —>
random) — ¢ ke Kon. . e
K, » ki, » ke Ency (request) cr e

< >

How TLS achieves its security goals

* What happens if a passive eavesdropper watches all
the traffic?

How TLS achieves its security goals

* What happens if a passive eavesdropper watches all the
traffic?

+ The application-layer traffic is encrypted, and
Diffie-Hellman and RSAare secure against a passive
eavesdropper so the attacker cannot discover the keys.

* The eavesdropper can see all the IP and TCP-layer
packet headers.

* The eavesdropper can also see the initial handshake and
metadata (which includes the server certifcate)

How TLS achieves its security goals

* What happens if an active attacker tries to man-in-the-
middle the connection?

How TLS achieves its security goals

* What happens if an active attacker tries
to man-in-the-middle the connection?

» For Diffie-Hellman, the key exchange is digitally signed
by the private key corresponding to the public key in the
server's certificate and the attacker doesn’t know the
server’s key, so they cannot forge the signature. The
client will not accept the key exchange.

» For RSA, the attacker does not know the private key
corresponding to the public key in the server’s
certificate, so cannot learn the client’s choice of
premaster secret to learn the session keys.

How TLS achieves its security goals

* What happens if anetwork attacker tries
to impersonate the server?

How TLS achieves its security goals

* What happens if anetwork attacker tries
to impersonate the server?

 For Diffie-Hellman, the attacker does not know the
private key corresponding to the public key in the
server's certifcate, so they cannot generate a valid
signature on their Diffie-Hellman key exchange that will
be accepted by the client.

» For RSAthe attacker does not know the server’s private
key so cannot decrypt the client’s encrypted premaster
secret message.

What if a private key gets stolen or compromised?

If an adversary obtains a server certifcate private key:

* With Diffie-Hellman key exchange, the adversary can:

+ actively man-in-the-middle a connection.
* impersonate the server to anyone.

» With RSA key exchange, the adversary can:

* impersonate the server to anyone.
» decrypt any traffic from now and any point in the past.

TLSv. 1.2 and below have had a lot of vulnerabilities

» Early versions of SSL developed before cryptographic
protocol design was fully understood.

+ Later protocol versions retained insecure options for
backwards compatibility.

Bleichenbacher
e=3 Loglam

Vaudenay
Padding Oracle

Boney/Brumley MD5
SSLv2 Padding Oracle CA Lucky 13 FREAK
Broken Heartbleed
BERserk BSS'-':B
roken
SSLv3 (POODLE)
TLSv1.2

SSLv2

1994 1998 2002 2006 2010 2014 2016

TLS 1.3 is the new standard

Developed over several years as a collaboration between
cryptographers from industry and academia.

Standardized August 2018 by IETF.

Major differences from TLS 1.2 and below:
* RSAkey exchange removed.
» Protects against passive decryption attacks.
* Only secure Diffie-Hellman parameters allowed.

» Protects against attacks exploiting bad choices of
parameters.

+ Handshake encrypted immediately after key exchange.

» Limits the amount of metadata visible to a passive
eavesdropper.

* Protocol downgrade protection.

* Protects against protocol being downgraded to prior
insecure versions.

TLS 1.3

TLS 1.3 encrypts the handshake immediately after doing a
Diffie-Hellman key exchange.

client hello: client random, DH key exchange

>
server hello: server random, DH key exchange

-« -
Encrypted certifcate
Encrypted signature of handshake
-
server fnished
<
KDF(pms,
KDF(pms, random) —
random) — ki ki . ke

kme , kmg, ke

TLS 1.3

TLS 1.3 encrypts the handshake immediately after doing a
Diffie-Hellman key exchange.

client hello: client random, DH key exchange

>
server hello: server random, DH key exchange

-« -
Encrypted certifcate
Encrypted signature of handshake
-
server fnished
<
client finished > KDF(oms,
KDHpms, random) —
random) — ki ki, ke

kme , kmg, ke

TLS 1.3

TLS 1.3 encrypts the handshake immediately after doing a
Diffie-Hellman key exchange.

client hello: client random, DH key exchange

>
server hello: server random, DH key exchange

-« -
Encrypted certifcate
Encrypted signature of handshake
-
server fnished
<
client finished > KDF(oms,
KDF(pms, random) —
random) — ki ki, ke
K » Kme » ke Ency (request) er

- >

TLS 1.3 deployment difficulties

TLS 1.3 deployment is slower than it should be, but now =
63% of TLS traffic (f5 labs).

Major reasons:

HTTPS proxies extremely common in industry.
Many of them rely on RSA key exchange to make
passive decryption and traffic analysis easier.
Removing RSA key exchange breaks all these boxes.
Man-in-the-middle hardware is also quite common.

Bad implementations have hard-coded values like TLS
versions and there is no way to update them.

END: Cryptography and TLS

Read more: TLS key theft and other risks in the wild

https://www.theguardian.com/world/2013/oct/03/lavabit-ladar-levison-fbi-
encryption-keys-snowden

Lavabit employed two stages of encryption for its paid
subscribers: storage encryption and transport encryption.
Storage encryption protects emails and other data that rests on
Lavabit’s servers. Theoretically, no person other than the
email user could access the data once it was so encrypted. By
using storage encryption, Lavabit held a unique market position
in the email industry, as many providers do not encrypt stored

data.

Tonaraagy BRSSO

YQOU ARE COMMANDED 1o appeer and testify before the United States district court ot the time, date, and
place shown below to tesify before the court’s grand jury. When you arrive, you must remain at the court unti} the
judge or court officer aliows you to leave.

Place: UNITED STATES DISTRICT COURT
401 Courthouse Square
Alexandrie, Virginia 22314

#ic and Time: July 16, 2013 9:30 AM

You must 2lso bring with you the following documents, slestronically stored {nformation, or abjests
(blask if not applicable):

In addition to your persenal appearunce, you are directed (0 bring to the grand jury the public and private
eneryption keys used by lavabit.com in any SSL (Secure Sockel Layer) or TLS (Transpori Security Layer)
scssions, including HTTPS sessions with clients using the lavabit.com web site and encrypted SMTP
communications (or Internet communications using other protocols) with mail servers;

Any uther information necessary 10 accomplish the installation and use of the pen/trap device ordered by
Judge Buchanan on June 28, 2013, unobtrusively and with minimum interference to the services that are
aceorded persons with respect to whom the installation and use is to take place;

If such information is electronically stored or unable to be physically transported to the grand jury, you
may provide 3 copy of the information to the Federal Bureau of Investigation. Provision of this information
to the FBI does not excuse your personal appearance.

o
[
i

Julw 12013 CLERK OF C

AO 93 (Rev. 12/09) Search and Seizure Warrant

UNDER GEAL, TSR BTATES DETRICT COUST

for the
Eastern District of Virginia

In the Matter of the Search of
(Briefly describe the properry to be searched
or identify the person by name and address)

Case No. 1:13SW522
INFORMATION ASSOCIATED WITH

N N

CONTROLLED BY LAVABIT, LLC
SEARCH AND SEIZURE WARRANT
To: Any authorized law enforcement officer

An application by a federal law enforcement officer or an attorney for the government requests the search

of the following person or property located in the Northermn District of Texas

(identify the person or describe the property to be searched and give lis location):
See Attachment A

ATTACHMENT B
Particular Things to be Seized
I Information to be disclosed by Lavabit, LLC (the “Provider™)
To the extent that the information described in Attachment A is within the possession,
custody, or control of the Provider, including any emails, records, files, logs, or information that
has been deleted but is still available to the Provider, the Provider is required to disclose the

following information to the government for each account or identifier listed in Attachment A:

a. All information necessary to decrypt communications sent to or from the Lavabit
e-mail accoum_ including encryption keys and SSL keys:
b. All information necessary to decrypt data stored in or otherwise associated with

Despite the unequivocal language of the August 1 Order,
Lavabit dallied and did not comply. Just before the 5:00 pm
August 2 deadline, for instance, Levison provided the FBI with
an ll-page printout containing largely illegible characters in
4-point type, which he represented to be Lavabit’s encryption
keys. The Government instructed Lavabit to provide the keys in
an industry-standard electronic format by the morning of August

5. Lavabit did not respond.

August 2013

Lavabit

My Fellow Users,

| have been forced to make a difficult decision: to become complicit in crimes against the American people or walk
away from nearly ten years of hard work by shutting down Lavabit. After significant soul searching, | have decided to
suspend operations. | wish that | could legally share with you the events that led to my decision. | cannot. | feel you
deserve to know what’s going on--the first amendment is supposed to guarantee me the freedom to speak out in
situations like this. Unfortunately, Congress has passed laws that say otherwise. As things currently stand, | cannot
share my experiences over the last six weeks, even though | have twice made the appropriate requests.

What's going to happen now? We've already started preparing the paperwork needed to continue to fight for the
Constitution in the Fourth Circuit Court of Appeals. A favorable decision would allow me resurrect Lavabit as an
American company.

This experience has taught me one very important lesson: without congressional action or a strong judicial
precedent, | would _strongly_ recommend against anyone trusting their private data to a company with physical ties
to the United States.

Sincerely,
Ladar Levison
Owner and Operator, Lavabit LLC

Security Error x

| [kitps://lavabit.com

The server's security certificate is revoked!

You attempted to reach lavabit.com, but the certificate that the server presented has been revoked by its

issuer. This means that the security credentials the server presented absolutely should not be trusted. You
may be communicating with an attacker.

Back to safety

»Help me understand

A CRYPTO NERD'S
IMAGINATION ¢

HIS LAPTOPS ENCRYFTED.
LETS BUILD A MILLION-DOLLAR,
CUISTER To CRACK\T.

NO GooD! IT'S
uosE -BIT R%N

E‘JIL Puw
15 FOILED! ™~

WHAT WolLD
ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE. TEUS U5 THE PASSWORD.

\ GoT 1T,
O O)

A

https://xkcd.com/538/

“Actual actual reality: nobody cares about his secrets. Also, |
would be hard-pressed to fnd that wrench for $5.”

The “crypto wars” and the historical development of TLS.

International Traffic in Arms Regulations
April 1,1992 version

Category XIII--Auxiliary Military Equipment ...

(b)Information Security Systems and equipment, cryptographic devices,
software, and componentsspecifically designed or modified therefore,
including:

(1)Cryptographic (including key management) systems, equipment, assemblies,
modules, integrated circuits, components or software with the capability of
maintaining secrecy or confidentiality of information or information
systems, except cryptographic equipment and software as follows:

(i)Restricted to decryption functions specifically designed to allow the
execution of copy protected software, provided the decryption functions
are not user-accessible.

(ii)Specially designed, developed or modified for use in machines for banking
or moneytransactions, andrestricted to use only in such transactions.
Machines for banking or moneytransactions include automatic teller
machines, self-service statement printers, point of sale terminals or
equipment for the encryption of interbanking transactions.

Timeline of US cryptography export control

* Pre-1994: Encryption software requires individual
export license as a munition.

+ 1994: US State Department amends ITAR regulations to
allow export of approved software to approved
countries without individual licenses. 40-bit symmetric
cryptography was understood to be approved under
this scheme.

» 1995: Netscape develops initial SSL protocol. Includes
weakened “export” cipher suites.

+ 1996: Bernstein v. United States; California judge rules
ITAR regulations are unconstitutional because “code is
speech”

+ 1996: Cryptography regulation moved to Department of
Commerce.

* 1999: TLS 1.0 standardized. Includes weakened “export”
cipher suites.

» 2000: Department of Commerce loosens regulations on
mass-market and open source software.

Commerce Control List: Category 5 - Info. Security
(May 23, 2019 version)

aAsymmetric algorithm employing a key length in
excess of 56-bits; notincluding parity bits; or

bAnasymmetric algorithm where the security of the algorithm
is based on any of the following:

1. Factorization of integers in excess of 512 bits (e.g., RSA);

2.Computation of discrete logarithms in a multiplicative group of a
finite field of size greater than 512 bits (e.g., Diffie-
Hellman over Z/pZ); or

3.Discrete logarithms in a group other than mentioned in

5A002.a.1.b.2 in excess of 112 bits (e.g., Diffie-Hellman over
anelliptic curve);

a. Designed or modified to perform ’'cryptanalytic functions.’

Commerce Control List: Category 5 - Info. Security
(May 23, 2019 version)

cAn“asymmetric algorithm’’ where the security of
the algorithm is based onany of the following:

1.Shortest vector or closest vector
problems associated with lattices (e.g.,
NewHope, Frodo, NTRUEncrypt, Kyber,
Titanium);

2.Finding isogenies between Supersingular
elliptic curves (e.g., Supersingular Isogeny
Key Encapsulation); or

3.Decoding randomcodes (e.g.,
McEliece, Niederreiter).

Technical Note: An algorithm described by
Technical Note 2.c. maybe referred to as being
post-quantum, quantum-safe or quantum-resistant.

US Politicians on Cryptography

“The government must be wary of suffocating [the
encryption software] industry with regulation in the new
digital age, but we must be able to strike a balance between
the legitimate concerns of the law enforcement community
and the needs of the marketplace." — U.S. Vice President Al
Gore, September 1997

“Because, if, in fact, you can’t crack that [encryption] at all,
government can’t getin, then everybody is walking around
with a Swiss bank account in their pocket —right? So there
has to be some concession to the need to be able to getinto
that information somehow.” — President Obama, March
2016

“Tothink that Apple won’t allow us to get into her cellphone?
Who do they think they are?” — US Presidential Candidate
Trump, 2016

Deliberately weakened cryptography in TLS

* SSLv2, SSLv3, and TLS 1.0 included options for
weakened cryptography to comply with US export
control in the 90s.

» Browsers outside the US were supposed to request
weakened cryptography, and those in the USwere
allowed to request normal strength cryptography.

* Browsers were updated long ago to never request these
weakened options once US regulations changed.

* Even though the political situation changed, many
servers never removed these options.

+ 2015-2016: A series of academic, mostly impractical
attacks (FREAK, Logjam, DROWN) show that even
current browsers at the time could be vulnerable.

