
CSE 127: Introduction to

Security

TLS and Secure Channels

George Obaido

UCSD

Spring 2022

Some material from Nadia Heninger, Deian Stefan, Dan Boneh, Stefan Savage

Reminder: Cryptographic primitives

Confidentiality

Integrity/Authenticity

Symmetric crypto

Symmetric

encryption

(e.g. AES)

MACs

Public-key crypto

Public-key

encryption

(e.g. RSA)

Digital signatures

Reminder: Network Attacker Threat Model

Network Attacker:

• Controls infrastructure: Routers, DNS

• Eavesdrops, injects, drops, or modif ies packets

Examples:

• W iFi at internet cafe

• Internet access at hotels

Goal: Establish a secure channel to a host that ensures

• Confidentiality and Integrity of messages

• Authentication of the remote host

Common cryptographic network protocols

• TLS (Transport Layer Security)

• Used to provide an encryption wrapper around HTTP to

make HTTPS, and for many other application layer

protocols.

• Security goals: Authenticate server, confidentiality and

integrity of traffic

• SSH (Secure Shell)

• Use to access remote machines

• Security goals: Authenticate server and client,

confidentiality and integrity of traffic

• IPsec (Internet Protocol Security)

• Provides an encrypted, authenticated alternative to IP

• Commonly used for VPNs (Virtual Private Networks)

• Security goals: client and server authentication,

authenticate headers, optionally encrypt headers,

ensure confdentiality and integrity of payloads

Constructing a secure encrypted channel

• To ensure confidentiality and integrity: Encrypt and MAC data

c = AESke(m), t = MACkm(c)

Constructing a secure encrypted channel

• To ensure confidentiality and integrity: Encrypt and MAC data

• To negotiate shared symmetric keys: Diffie-Hellman key

exchange. Key Derivation Function (KDF) maps shared secret

to symmetric key.

c = AESke(m), t = MACkm(c)

ga

gb

ke, km = KDF(gab) ke, km = KDF(gab)

Constructing a secure encrypted channel

• To ensure confidentiality and integrity: Encrypt and MAC data

• To negotiate shared symmetric keys: Diffie-Hellman key

exchange. Key Derivation Function (KDF) maps shared secret

to symmetric key.

• To ensure authenticity of endpoints: Digital Signatures

ke, km = KDF(gab) ke, km = KDF(gab)

ga

gb

RSApubB , SignB (ga, gb)

c = AESke(m), t = MACkm(c)

Constructing a secure encrypted channel

• To ensure confidentiality and integrity: Encrypt and MAC data

• To negotiate shared symmetric keys: Diffie-Hellman key

exchange. Key Derivation Function (KDF) maps shared secret

to symmetric key.

• To ensure authenticity of endpoints: Digital Signatures

• To ensure an adversary can’t reuse a signature later, add

some random unique values (“nonces”)

ga, random ra

gb, random rb

RSApubB , SignB (ga, gb, ra, rb)

c = AESke(m), t = MACkm(c)

ke, km = KDF(gab, ra, rb) ke, km = KDF(gab, ra, rb)

This is not exactly what TLS looks like, but it’s similar.

Constructing a secure encrypted channel

• To ensure confidentiality and integrity: Encrypt and MAC data

• To negotiate shared symmetric keys: Diffie-Hellman key

exchange. Key Derivation Function (KDF) maps shared secret

to symmetric key.

• To ensure authenticity of endpoints: Digital Signatures

• To ensure an adversary can’t reuse a signature later, add

some random unique values (“nonces”)

ga, random ra

gb, random rb

RSApubB , SignB (ga, gb, ra, rb)

c = AESke(m), t = MACkm(c)

ke, km = KDF(gab, ra, rb) ke, km = KDF(gab, ra, rb)

How does Alice know to trust Bob’s public signing key?

Public Key Infrastructure: Establishing Trust in Keys

Ways to establish trust in keys:

• Meet in person to exchange keys.

• Not practical at scale over the internet

Public Key Infrastructure: Establishing Trust in Keys

Ways to establish trust in keys:

• Fingerprint verification

• Verify a cryptographic hash of a public key through a

separate channel, or “trust on f irst use” (TOFU).

• This is used by SSH for host keys.

$ ssh elk.sysnet.ucsd.edu
The authenticity o f host ’e lk .sysnet .ucsd.edu (137.110.222.162)’ c a n ’ t be
establ ished.
ED25519 key f ingerprint i s SHA256:rI/PqZezDo18EbK8U8/HXesuO7iCoNUGa+8r3t3qGxw.
This key i s not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])?

Public Key Infrastructure: Establishing Trust in Keys

Ways to establish trust in keys:

• Fingerprint verification

• Verify a cryptographic hash of a public key through a

separate channel, or “trust on f i rs t use” (TOFU).

• This is used by SSH for host keys.

• This is also used by encrypted messaging apps like Signal

Public Key Infrastructure: Establishing Trust in Keys

Ways to establish trust in keys:

• Certificate Authorities

• A certificate authority (CA) is a kind of

commercial trusted intermediary.

• Certificate Authorities verify public keys and sign them in

exchange for money.

• If you trust the certificate authority, you transitively trust

the keys it signs.

• This is used for TLS, software signing keys.

Public Key Infrastructure: Establishing Trust in Keys
Ways to establish trust in keys:

• Web of Trust (e.g., PGPG)

• In a web of trust, you establish trust in intermediaries of

your choice.

• You then transitively trust the keys they sign.

$ gpg - -edit -key dickey@invisible-island.net
gpg (GnuPG) 2 .2 .29; Copyright (C) 2021 Free Software Foundation, I n c . This i s free
software: you are free to change and redistr ibu te i t .
There i s NO WARRANTY, to the extent permitted by law.
pub dsa1024/702353E0F7E48EDB

created: 2004-01-05 expires: 2022-07-05 usage: SC t r u s t : unknown
v a l i d i t y : unknown

sub elg1024/0296C3D9E4374AE1
created: 2004-01-05 expires: never usage: E

[unknown] (1) . Thomas Dickey <dickey@invisible-island.net> gpg> trust
pub dsa1024/702353E0F7E48EDB

created: 2004-01-05 expires: 2022-07-05 usage: SC t r u s t : unknown
v a l i d i t y : unknown

sub elg1024/0296C3D9E4374AE1
created: 2004-01-05 expires: never usage: E

[unknown] (1) . Thomas Dickey <dickey@invisible-island.net>
Please decide howf a r you trust t h i s user to correct ly veri fy other users’ keys (by looking at
passports, checking fingerprints from different sources, e t c .)

1 = I don’t know or won’t say
2 = I do NOT trust
3 = I trust marginally
4 = I trust f u l l y
5 = I trust ult imately
m = back to the main menu Your decision?

mailto:dickey@invisible-island.net
mailto:dickey@invisible-island.net
mailto:dickey@invisible-island.net

A more modern and practical WoT: Keybase

Disclaimer: Available on Keybase.

https://keybase.io/

TLS: Transport Layer Security

• TLS provides an encrypted channel for application data.

• Used for HTTPS: HTTP inside of a TLS session

• Used to be called SSL (Secure Sockets Layer) in the 90s.

SSL 1.0 Terribly insecure; never released.

SSL 2.0 Released 1995; terribly insecure,

deprecated in 2011
SSL 3.0 Released 1996; insecure, deprecated in

2015.

TLS 1.0 Released 1999; deprecated in 2020.

TLS 1.1 Released 2006; deprecated in 2020.

TLS 1.2 Released 2008. Ok.
TLS 1.3 Standardized in August 2018 and is being

rolled out now; major change from TLS 1.2.

TLS 1.2 with Diffie-Hellman Key Exchange
Step 1: The client (browser) tells the server what kind of

cryptography it supports.

client hello: client random

[list of cipher suites]

Cipher suites: list of options like:

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

This says to use

• elliptic curve Diffie-Hellman for key exchange

• RSA digital signatures

• 128-bit AES for symmetric encryption

• GCM (Galois Counter Mode) AES mode of operation

• SHA-256 for hash function

TLS 1.2 with Diffie-Hellman Key Exchange
Step 1: The client (browser) tells the server what kind of

cryptography it supports.

client hello: client random

[list of cipher suites]

Cipher suites: list of options like:

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Server cipher suite confguration can be confusing and difficult for

sysadmins. Many insecure options like

TLS_DHE_RSA_WITH_DES_CBC_SHA

or

TLS_NULL_WITH_NULL_NULL

Subtle protocol errors around cipher suite negotiation.

TLS 1.2 with Diffie-Hellman Key Exchange

Step 2: The server tells the client which kind of cryptography

it wishes to use.

client hello: client random

[list of cipher suites]

server hello: server random, [cipher suite]

TLS 1.2 with Diffie-Hellman Key Exchange

Step 3: The server sends over its certifcate which contains

the server’s public key and signatures from a certifIcate

authority.

client hello: client random

[list of cipher suites]

server hello: server random, [cipher suite]

certificate = public RSA key + CA signatures

Certificates and Certificate Authorities in TLS

Website public keys are encoded into certificates.

Certificates signed by CAs.

Browsers come with set of trusted CAs.

To verify a certificate, browsers verify chain of digital

certificates back to trusted root CA.

Certificates typically valid for 3 months to multiple years.

Sample certificate

Who are we trusting?

Who is this cert for?

Who are we trusting?

Who is this cert for?

CSE ’s pub key info

Where we should

check for revocation

information

Revocation

• Problem: keys get compromised

• Attacker with a key can impersonate you and read

messages encrypted to you

• Key expiration helps, but not enough

• CA and PGP PKIs support revocation

• “I, Alice, revoke my public key . . . do not use it.”

• Signs revocation with her private key

• Others can verify Alice’s signature, stop using key

Root CAs on OS X

Which CA can issue a certificate for fbi.gov?

Which CA can issue a certificate for google.com?

Man-in-the-middle attack using rogue cert

Attacker proxies data between user and bank.

Sees all traffic and can modify data at will.

https://www.microsoft.com/en-us/research/publication/detection-of-rogue-certi%EF%AC%81cates-from-trusted-certi%EF%AC%81cate-
authorities-using-deep-neural-networks/

CA Hacks and Vulnerabilities
There is a long history of CAs getting hacked or doing the

wrong thing.

• 2011: Comodo and DigiNotar CAs hacked, used to issue
fraudulent certificates for Hotmail, Gmail, Skype, Yahoo
Mail, Firefox...

• Fraudulent certifcates later used in man-in-the-middle

attack against Iran.

• 2013: TurkTrust issued fraudulent certifcate for Gmail.

• 2014: Indian NIC issue certs for Google and Yahoo!

• 2016: WoSign issues cert for GitHub.

Mitigations:

• Certificate pinning.

• Hard code certificates for some sites in browser.

• Certificate Transparency.

• Public append-only log of certificate issuances to track

fraudulent certs.

TLS 1.2 with Diffie-Hellman Key Exchange
Step 3: The server sends over its certifcate which contains

the server’s public key and signatures from a certifcate

authority.

client hello: client random

[list of cipher suites]

server hello: server random, [cipher suite]

certifcate = public RSA key + CA signatures

TLS 1.2 with Diffie-Hellman Key Exchange

Step 4: The server initiates a Diffie-Hellman key exchange.

client hello: client random

[list of cipher suites]

server hello: server random, [cipher suite]

certifcate = public RSA key + CA signatures

server kex: p, g, ga, SignRSAkey(p, g, ga)

To protect against man-in-the-middle attacks, the server

uses its public key to sign the Diffie-Hellman key exchange.

TLS also allows client authentication, but this is rare.

TLS 1.2 with Diffie-Hellman Key Exchange
Step 5: The client responds with its half of the Diffie-Hellman

key exchange.

client hello: client random

[list of cipher suites]

server hello: server random, [cipher suite]

certifcate = public RSA key + CA signatures

server kex: p, g , ga, SignRSAkey(p, g , ga)

client kex: gb

TLS 1.2 with Diffie-Hellman Key Exchange
Step 6: The client and server derive symmetric encryption

keys from the shared secret using a key derivation function.

client hello: client random

[list of cipher suites]

server hello: server random, [cipher suite]

certifcate = public RSA key + CA signatures

server kex: p, g , ga, SignRSAkey(p, g , ga)

client kex: gb

KDF(gab,

random) →

kmc , kms , ke

KDF(gab,

random) →

c s
km , km , ke

TLS 1.2 with Diffie-Hellman Key Exchange
Step 7: The client and server verify the integrity of the

handshake using the MAC keys they have derived.

client hello: client random

[list of cipher suites]

server hello: server random, [cipher suite]

certifcate = public RSA key + CA signatures

server kex: p, g , ga, SignRSAkey(p, g , ga)

client kex: gb

KDF(gab,

random) →

kmc , kms , ke

KDF(gab,

random) →

kmc , kms , ke

mc
client fnished: MACk (dialog)

ms
server fnished: MACk (dialog)

TLS 1.2 with Diffie-Hellman Key Exchange
Step 8: The client and server can now send encrypted

application data (e.g. HTTP) using their secure channel.

client hello: client random

[list of cipher suites]

server hello: server random, [cipher suite]

certifcate = public RSA key + CA signatures

server kex: p, g , ga, SignRSAkey(p, g , ga)

client kex: gb

KDF(gab,

random) →

kmc , kms , ke

KDF(gab,

random) →

kmc , kms , ke

mc
client fnished: MACk (dialog)

ms
server fnished: MACk (dialog)

Encke(request)

TLS 1.2 with RSAKey Exchange
TLS versions prior to 1.3 also supported using RSA public

key encryption to share the premaster secret (shared secret

master key).

client hello: client random

[supported cipher suites]

TLS 1.2 with RSA Key Exchange
TLS versions prior to 1.3 also supported using RSA public

key encryption to share the premaster secret (shared secret

master key).

client hello: client random

[supported cipher suites]

server hello: server random, [RSA cipher suite]

certifcate = RSA pubkey k2048 + CA signatures

TLS 1.2 with RSA Key Exchange
TLS versions prior to 1.3 also supported using RSA public

key encryption to share the premaster secret (shared secret

master key).

client hello: client random

[supported cipher suites]

server hello: server random, [RSA cipher suite]

certifcate = RSA pubkey k2048 + CA signatures

client key exchange: RSAenck2048(pms)

KDF(pms,

random) →

kmc , kms , ke

KDF(pms,

random) →

c s
km , km , ke

kmc
client fnished: Auth (dialog)

TLS 1.2 with RSA Key Exchange
TLS versions prior to 1.3 also supported using RSA public

key encryption to share the premaster secret (shared secret

master key).

client hello: client random

[supported cipher suites]

server hello: server random, [RSA cipher suite]

certifcate = RSA pubkey k2048 + CA signatures

client key exchange: RSAenck2048(pms)

KDF(pms,

random) →

kmc , kms , ke

KDF(pms,

random) →

c s
km , km , ke

kmc
client fnished: Auth (dialog)

server fnished: Authkm (dialog)
s

TLS 1.2 with RSA Key Exchange
TLS versions prior to 1.3 also supported using RSA public

key encryption to share the premaster secret (shared secret

master key).

client hello: client random

[supported cipher suites]

server hello: server random, [RSA cipher suite]

certifcate = RSA pubkey k2048 + CA signatures

client key exchange: RSAenck2048(pms)

KDF(pms,

random) →

k , k , kmc ms e

KDF(pms,

random) →

c s
km , km , ke

kmc
client fnished: Auth (dialog)

server fnished: Authkm (dialog)
s

e
Enck (request)

How TLS achieves its security goals

• What happens if a passive eavesdropper watches all
the traffic?

How TLS achieves its security goals

• What happens if a passive eavesdropper watches all the
traffic?

• The application-layer traffic is encrypted, and

Diffie-Hellman and RSA are secure against a passive

eavesdropper so the attacker cannot discover the keys.

• The eavesdropper can see all the IP and TCP-layer

packet headers.

• The eavesdropper can also see the initial handshake and

metadata (which includes the server certifcate)

How TLS achieves its security goals

• What happens if an active attacker tries to man-in-the-
middle the connection?

How TLS achieves its security goals

• What happens if an active attacker tries
to man-in-the-middle the connection?

• For Diffie-Hellman, the key exchange is digitally signed

by the private key corresponding to the public key in the

server’s certificate and the attacker doesn’t know the

server’s key, so they cannot forge the signature. The

client will not accept the key exchange.

• For RSA, the attacker does not know the private key

corresponding to the public key in the server’s

certificate, so cannot learn the client’s choice of

premaster secret to learn the session keys.

How TLS achieves its security goals

• What happens if a network attacker tries
to impersonate the server?

How TLS achieves its security goals

• What happens if a network attacker tries
to impersonate the server?

• For Diffie-Hellman, the attacker does not know the

private key corresponding to the public key in the

server’s certifcate, so they cannot generate a valid

signature on their Diffie-Hellman key exchange that will

be accepted by the client.

• For RSA the attacker does not know the server’s private

key so cannot decrypt the client’s encrypted premaster

secret message.

What if a private key gets stolen or compromised?

If an adversary obtains a server certifcate private key:

• With Diffie-Hellman key exchange, the adversary can:

• actively man-in-the-middle a connection.

• impersonate the server to anyone.

• With RSA key exchange, the adversary can:

• impersonate the server to anyone.

• decrypt any traffic from now and any point in the past.

TLS v. 1.2 and below have had a lot of vulnerabilities

• Early versions of SSL developed before cryptographic

protocol design was fully understood.

• Later protocol versions retained insecure options for

backwards compatibility.

TLS 1.3 is the new standard

Developed over several years as a collaboration between

cryptographers from industry and academia.

Standardized August 2018 by IETF.

Major differences from TLS 1.2 and below:

• RSA key exchange removed.

• Protects against passive decryption attacks.

• Only secure Diffie-Hellman parameters allowed.

• Protects against attacks exploiting bad choices of

parameters.

• Handshake encrypted immediately after key exchange.

• Limits the amount of metadata visible to a passive

eavesdropper.

• Protocol downgrade protection.

• Protects against protocol being downgraded to prior

insecure versions.

TLS 1.3

KDF(pms,

random) →

kmc , kms , ke

KDF(pms,

random) →

kmc , kms , ke

TLS 1.3 encrypts the handshake immediately after doing a

Diffie-Hellman key exchange.

client hello: client random, DH key exchange

server hello: server random, DH key exchange

Encrypted certifcate

Encrypted signature of handshake

server fnished

TLS 1.3

KDF(pms,

random) →

kmc , kms , ke

KDF(pms,

random) →

c s
km , km , ke

TLS 1.3 encrypts the handshake immediately after doing a

Diffie-Hellman key exchange.

client hello: client random, DH key exchange

server hello: server random, DH key exchange

Encrypted certifcate

Encrypted signature of handshake

server fnished

client finished

TLS 1.3

KDF(pms,

random) →

k , k , kmc ms e

KDF(pms,

random) →

c s
km , km , ke

TLS 1.3 encrypts the handshake immediately after doing a

Diffie-Hellman key exchange.

client hello: client random, DH key exchange

server hello: server random, DH key exchange

Encrypted certifcate

Encrypted signature of handshake

server fnished

client finished

e
Enck (request)

TLS 1.3 deployment difficulties

TLS 1.3 deployment is slower than it should be, but now ≈

63% of TLS traffic (f5 labs).

Major reasons:

• HTTPS proxies extremely common in industry.

• Many of them rely on RSA key exchange to make

passive decryption and traffic analysis easier.

• Removing RSA key exchange breaks all these boxes.

• Man-in-the-middle hardware is also quite common.

• Bad implementations have hard-coded values like TLS

versions and there is no way to update them.

Readmore:TLS key theft and other risks in the wild

END: Cryptography and TLS

https://www.theguardian.com/world/2013/oct/03/lavabit-ladar-levison-fbi-
encryption-keys-snowden

August 2013

https://xkcd.com/538/

“Actual actual reality: nobody cares about his secrets. Also, I

would be hard-pressed to f n d that wrench for $5.”

The “crypto wars” and the historical development of TLS.

International Traffic in Arms Regulations
April 1, 1992 version

Category X I I I - - A u x i l i a ry M il i tary Equipment . . .

(b)Information Security Systems and equipment, cryptographic devices ,
software, and components s p e c i f i c a l l y designed or modified therefore,

inc luding:

(1)Cryptographic (including key management) systems, equipment, assemblies,
modules, integrated c i r c u i t s , components or software with the capabi l i ty o f

maintaining secrecy or c o n f id en t ia l i ty o f information or information
systems, except cryptographic equipment and software as fo l lows:

(i)Restricted to decryption functions s p e c i f i c a l l y designed to allow the
execution o f copy protected software, provided the decryption functions
are not use r-accessible .

(i i)Specia l ly designed, developed or modified f o r use in machines f o r banking
or moneyt ra nsact ions , and restr ic ted to use only in such transactions .

Machines f o r banking or money transactions include automatic t e l l e r
machines, s e l f - s e rv ice statement p r i n t e r s , point o f sa le terminals or
equipment f o r the encryption of interbanking transact ions .

. . .

Timeline of US cryptography export control
• Pre-1994: Encryption software requires individual

export license as a munition.

• 1994: US State Department amends ITAR regulations to

allow export of approved software to approved

countries without individual licenses. 40-bit symmetric

cryptography was understood to be approved under

this scheme.

• 1995: Netscape develops initial SSL protocol. Includes

weakened “export” cipher suites.

• 1996: Bernstein v. United States; California judge rules

ITAR regulations are unconstitutional because “code is

speech”

• 1996: Cryptography regulation moved to Department of

Commerce.

• 1999: TLS 1.0 standardized. Includes weakened “export”

cipher suites.

• 2000: Department of Commerce loosens regulations on

mass-market and open source software.

Commerce Control List: Category 5 - Info. Security
(May 23, 2019 version)

a.Asymmetric algorithm employing a key length in
excess o f 5 6 -bi ts ; not including parity b i t s ; or

b.Anasymmetric algorithm where the security of the algorithm
i s based on any of the following:

1. Factorization of integers in excess of 512 b i t s (e . g . , RSA);

2.Computation o f discrete logarithms in a multiplicative group of a
f i n i t e f i e l d of size greater than 512 b i t s (e . g . , D i f f i e -

Hellman over Z/pZ); or

3.Discrete logarithms in a group other than mentioned in
5A002.a.1.b.2 in excess of 112 b it s (e . g . , Diffie-Hellman over
an e l l i p t i c curve);

. . .

a . Designed or modified to perform ’ cryptanalytic functions . ’

Commerce Control List: Category 5 - Info. Security
(May 23, 2019 version)

c.An ‘‘asymmetric algorithm’ ’ where the security of
the algorithm i s based on any of the following:

1.Shortest vector or closest vector
problems associated with l a t t i c e s (e . g . ,
NewHope, Frodo, NTRUEncrypt, Kyber,
Titanium);

2.Finding isogenies between Supersingular
e l l i p t i c curves (e . g . , Supersingular Isogeny
Key Encapsulation); or

3.Decoding randomcodes (e . g . ,
McEliece, Niederreiter) .

Technical Note: An algorithm described by
Technical Note 2 . c . maybe referred to as being
post-quantum, quantum-safe or quantum-resistant.

US Politicians on Cryptography

“The government must be wary of suffocating [the

encryption software] industry with regulation in the new

digital age, but we must be able to strike a balance between

the legitimate concerns of the law enforcement community

and the needs of the marketplace." — U.S. Vice President Al

Gore, September 1997

“Because, if, in fact, you can’t crack that [encryption] at all,

government can’t get in, then everybody is walking around

with a Swiss bank account in their pocket – right? So there

has to be some concession to the need to be able to get into

that information somehow.” — President Obama, March

2016

“To think that Apple won’t allow us to get into her cellphone?

Who do they think they are?” — US Presidential Candidate

Trump, 2016

Deliberately weakened cryptography in TLS

• SSLv2, SSLv3, and TLS 1.0 included options for

weakened cryptography to comply with US export

control in the 90s.

• Browsers outside the US were supposed to request

weakened cryptography, and those in the US were

allowed to request normal strength cryptography.

• Browsers were updated long ago to never request these

weakened options once US regulations changed.

• Even though the political situation changed, many

servers never removed these options.

• 2015–2016: A series of academic, mostly impractical

attacks (FREAK, Logjam, DROWN) show that even

current browsers at the time could be vulnerable.

