
CSE 127: Introduction to

Security

Lecture 16: Authentication and passwords

George Obaido

UCSD

Spring 2022

Slides from Nadia Heninger and Stefan Savage

Today

• Common techniques for authenticating users, locally

and remotely

• Security challenges associated with different

authentication methods

• Mitigations designed to address some of the above

security challenges

Authentication

• Using cryptography, Alice and Bob can authenticate
each other by proving they know respective secret keys

• Challenge-response authentication: Alice sends a

random challenge to Bob. Bob signs (or MACs) the

challenge.

• Switch roles, repeat.

• What exactly did we authenticate?

• Have Alice and Bob really committed their secret keys to

memory?

• Did they manually perform cryptographic signing

operations?

Authentication

• Using cryptography, Alice and Bob can authenticate
each other by proving they know respective secret keys

• Challenge-response authentication: Alice sends a

random challenge to Bob. Bob signs (or MACs) the

challenge.

• Switch roles, repeat.

• What exactly did we authenticate?

• Have Alice and Bob really committed their secret keys to

memory?

• Did they manually perform cryptographic signing

operations?

• They authenticated each other’s computers.

Authentication

• How do we authenticate a human user to a system?

• System is often remote server

• Authenticate: ascertain who is interacting with the
system

• Necessary to apply appropriate security policy

• Only the intended subject should be able to authenticate

to the system as that subject

Authentication

How do we authenticate a human user to a machine?

• Provide identity and proof of identity

• Identity examples:

• Name, username, student ID, others?

Authentication

How can Alice prove that she’s really Alice?

• Three types of authentication factors

• Password: Something you know

• Token: Something you have

• Biometrics: Something you are

• Each factor can be used independently, or combined for
multi-factor authentication.

• Typically two-factor

@swiftonsecurity

Something you know

9
https://wallpaperaccess.com/blue-desktop
- https://creativecommons.org/licenses/by-nc-nd/4.0/

https://wallpaperaccess.com/blue-desktop

Something you know

• A secret that only the real Alice should know

• A secret passcode.

• Examples: PIN, password
• PIN: Personal Identification Number (misnomer. Usually

used for authentication, not identification.)

• A secret about Alice

• Examples: mother’s maiden name, first pet, mortgage

payment

• Technically, only proves knowledge of secret, not that
it’s really Alice

• Secrets leak, can be shared, guessed.

https://xkcd.com/1121/

https://xkcd.com/1121/

Passwords

How does Alice prove she knows the password?

• Simplest: Alice provides the password to the system.

• Problems?

• Passive adversary may observe password in transit

• Need secure channel to protect confidentiality

• Active adversary may impersonate the system

• Alice needs a way of authenticating the system

Setting

Alice uses a keyboard to type her password into client

software that sends it on to the remote system for

authentication.

Which points can Eve attack?

Attacking Passwords

• Get it from Alice

• Intercept it

• Get it from the system

Attacking Passwords
• Is Alice invested in keeping it a secret?

• Debit card PIN number?

• Personal email password?

• Netflix password?
• Corporate network password?

• Is it written down somewhere?
• Good against remote attackers

• Not good against targeted local attacks (co-workers,

family, abusers)

• Know your threat model!

• Can it be guessed based on available knowledge about

Alice (birthday, names of pets/kids/spouses, etc)?

https://xkcd.com/538/

https://xkcd.com/538/

Strong passwords

• Challenge: come up with passwords

that are hard to guess, but easy to

remember.

• Common password rules:

• Composition: Letters and numbers,

mixed case, symbols, banned

dictionary

• Length (char size)

• Lifetime (monthly, quarterly,

yearly, etc)

• Unintended consequences

• Required letters/symbols → ?

• Monthly change requirement → ?

https://en.wikipedia.org/

wiki/List_of_the_most_

common_passwords

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords
https://en.wikipedia.org/wiki/List_of_the_most_common_passwords
https://en.wikipedia.org/wiki/List_of_the_most_common_passwords

Attacking Passwords

• Can Eve trick Alice into revealing her password?

• How does Alice know she is logging into the real system?

• Phishing!

• Tricking Alice into revealing her password by

impersonating the system she is trying to access

• Alice has to be able to authenticate the system before

providing her password

Phishing

How can Alice authenticate the system?

HTTPS certificates validate the domain name in the URL.

What does it really tell you?

• That you are communicating with a server owned by

UCSD?

• No. Only that you are communicating to www.ucsd.edu

and your connection is secure (confidentiality and

integrity are protected) against passive and active

attackers on the link.

http://www.ucsd.edu/

Phishing

• How do you know www.ucsd.edu is a legitimate UCSD

web site?

• What about:

• www.cse.ucsd.edu
• www.ucsd.cse.edu
• www.cse-ucsd.edu

http://www.ucsd.edu/
http://www.cse.ucsd.edu/
http://www.ucsd.cse.edu/
http://www.cse-ucsd.edu/

Phishing

• How do you know www.ucsd.edu is a legitimate UCSD

web site?

• A user is expected to know which domains are
associated with the entity they are trying to interact

with.

• And how to properly parse the URL

• Some browsers now highlight the domain portion

http://www.ucsd.edu/

Phishing

What if the user knows which domain is real?

• Homoglyphs: symbols that appear

identical or very similar

• Attack: Register domain names that

look just like the victim domain, but

using a different character set.

Phishing

• https:
//www.irongeek.com/homoglyph-attack-generator.php

•

• https://www.xudongz.com/blog/2017/idn-phishing/

•

https://www.irongeek.com/homoglyph-attack-generator.php
https://www.irongeek.com/homoglyph-attack-generator.php
https://www.xudongz.com/blog/2017/idn-phishing/

Phishing

• Related: When logging into a machine locally, how does

Alice know that she is entering the password into the

real login program?

• Trusted path: Mechanism that guarantees user is

interacting with intended component

• CTRL+ALT+DEL on Windows

Attacking Passwords

• Shoulder surf

• Side channels

• Hardware keyloggers

Shoulder surf

Side channels

Hardware

keyloggers

Attacking Passwords

• Software keyloggers

• Passwords in memory

• Internal buffers

• Clipboard

• Stored passwords

• Cached passwords (e.g. browsers)

• Password managers (e.g Bitwarden, LastPass, etc)

• Good ones are well protected by master passwords

• AlicePasswords.txt

Attacking Passwords

• Monitoring the transmission channel

• Channel should be encrypted to protect password

confidentiality

• Examples: TLS/SSH/HTTPS

Attacking Passwords

• Use system as an oracle: try to log in with different

passwords

• Defense: Minimize error information

• Defense: Limit number of login attempts per user

• Attack: Try different users for common passwords

• Compromise password database

• Huge yield compared to user-side attacks

• https://haveibeenpwned.com/
• Password reuse issues

https://haveibeenpwned.com/

Protecting Passwords

• How can the system verify that the password Alice

entered is correct?

• Naive solution:

• Store a copy of the password and compare provided

copy to the stored one

• Problem?

• If system is compromised, passwords are revealed

• Same passwords may be used on other systems

Protecting Passwords

• Other solutions?

Protecting Passwords

• Other solutions?

• Hint: System does not need to know the password, only

be able to verify it is correct.

• What if the system stores a cryptographic hash of the
password?

• H(password)

• Hash must be pre-image resistant (hard to invert)

• Better... but still problematic.

Protecting Passwords

• Given a hash of a password, Eve can use it to validate
guesses

• Also, obvious which users have identical passwords

• Dictionary attacks

• Dictionary: collection of possible, or likely, password

strings

• Try every string in the dictionary until the correct entry is

found.

• Pre-compute hashes of all strings in the dictionary, then

perform reverse look-ups by hash to find corresponding

password.

https://xkcd.com/1286/

https://xkcd.com/1286/

Protecting Passwords

Dictionary attack cost example:

• Assume passwords are composed of upper or lower

case letters or digits

• 26+ 26+ 10 = 62 ≈ 64 possible values per character

• 64n = 26n possible passwords of length n

• For n = 6,236 possible password strings

• ≈ 10 TB to store all possible 6-character passwords and

respective SHA-1 hashes

Can be reduced using techniques like rainbow tables.

Protecting Passwords

• How do we make dictionary attacks harder?

• Note, the attacker only had to compute one dictionary

of hashes that could then be used for any user’s

password hash from any system.

• We can parameterize, or “salt”, password hashes with
unique random numbers

• Instead of storing H(p), store (r , H(r||p)), where r is

random salt

• Precomputation is no longer possible. Attacker must

compute unique hashes for every target

• Better... but still problematic.

Specialized Password-Cracking Hardware

• 2012: Gosney 25 GPU password cracking
cluster

• 350B NTLM hashes (used by Windows) per

sec

• 180B MD5 hashes/sec, 63B SHA-1

hashes/sec

• State actors can build custom hardware

https://arstechnica.com/information-technology/2012/12/25-gpu-cluster-cracks-every-
standard-windows-password-in-6-hours/

Protecting Passwords

• How do we make dictionary attacks even harder?

Protecting Passwords

• How do we make dictionary attacks even harder?

• Hint: The computation to verify a password for a given

user on a legitimate system happens relatively

infrequently, but an attacker attempting to crack a

password hash must perform many, many attempts

Protecting Passwords

• How do we make dictionary attacks even harder?

• Hint: The computation to verify a password for a given

user on a legitimate system happens relatively

infrequently, but an attacker attempting to crack a

password hash must perform many, many attempts

• Conclusion: Use a deliberately slow and

resource-consuming hashing function

• PBKDF2, bcrypt, scrypt

Protecting Passwords

• Building blocks for password protection

• Hash

• Salt

• Slow down

• For Slow down, use one of:

• PBKDF2

• bcrypt

• scrypt

What is your password hygiene?

Open-ended question

Go to www.menti.com and use the code 1044 1273

Mine: Use strong passwords, don’t reuse passwords, never share passwords, etc.

Something you have

42
https://wallpaperaccess.com/blue-desktop
- https://creativecommons.org/licenses/by-nc-nd/4.0/

https://wallpaperaccess.com/blue-desktop

Something You Have

• Something only Alice should have

• Examples: key, smartcard, RFID badge, SecurID token

• Frequently used as a second factor (in combination with

a passcode)

• 2FA token

• Technically, only proves possession of the token, not

that it’s really Alice

• Tokens get shared, lost, stolen, duplicated

Smartcards

• Idea: Put a secret key into a tiny computer that Alice can

carry with her

• Plastic card with an embedded integrated circuit

• Provisioned with secret keys

• Interacts with readers through contact pads or short

range wireless (NFC)

• Many uses beyond user

authentication

• Stored value payment and transit

• SIM cards

• Satellite TV

https: //en.wikipedia.org/wiki/EMV

• Sample authentication protocol:

1. Interrogate with a random challenge

2. Verify signed response

NFC hacking

Use protected sleeves

https://en.wikipedia.org/wiki/EMV
https://en.wikipedia.org/wiki/EMV

One Time Passcode Tokens

• Same basic idea as a smart card: a tiny computer with a

secret

• Typically without a direct computer interface

• How to provide challenge and get response?

• Response is displayed on token screen, user types it

into the authentication system.

• Typically using current time instead of a challenge

(requires time sync)

• Some variants have keypads to allow the user to type in

a challenge as well

https://www.rsa.com/en-us/resources/rsa-securid-hardware-tokens

https://www.rsa.com/en-us/resources/rsa-securid-hardware-tokens

One Time Passcode Tokens
• Typical protocol:

• Based on symmetric cryptography (shared secret

between token and authenticating server)

• Periodically (e.g. once a minute) token generates a new

single-use code by MACing current time

• To authenticate, Alice types in her password and current

code (two-factor)

• Strengths:
• Knowing the password is not enough to impersonate

Alice

• Each code is single-use. Eavesdropping

(shoulder-surfing, keylogging, etc.) does not enable Eve

to impersonate Alice in the future.

• Observing any number of codes does not help in

predicting future ones.

One Time Passcode Tokens

• Weaknesses:

• Vulnerable to man-in-the-middle and phishing attacks.

• Server needs to know the secret key to validate token

codes. Single point of failure.

• Does not scale well to multiple accounts.

https://www.techstagram.com/2013/07/27/rsa-passban/

https://www.techstagram.com/2013/07/27/rsa-passban/

One-Time Passcode without Tokens

• Virtual edition

• Everybody (in some parts of the

world) already carries a tiny

computer. Let’s just use that.

• Strength: better scaling, support

multiple keys with the same physical

device.

• Weakness: the two authentication

factors are not as isolated anymore.

https://vip.symantec.com/

https://vip.symantec.com/

One-time Passcode without Tokens
• Extending the idea of using (possession of) your phone

as an authentication factor.

• Authenticating server can send Alice a one-time code

via SMS.

• Alice logs in with her password and received code.

• Often used for step-up authentication or account

recovery.

• Step-up authentication: secondary (stronger)

authentication mechanism invoked based on risk level
• Examples: When attempting to access more sensitive

resources, or when behavior patterns do not match

routine.

• Similar solutions use email instead of SMS.
• Proof that Alice has access to the email account she

registered with.

• Widespread use, but weaker against range of threat

models (SMS not very secure)

Something you are

50
https://wallpaperaccess.com/blue-desktop
- https://creativecommons.org/licenses/by-nc-nd/4.0/

https://wallpaperaccess.com/blue-desktop

Something You Are

• Some unique identifying characteristic that only Alice

has (biometrics)

• Physical feature: fingerprint, iris print

• Behavioral characteristic: handwriting, typing

• Combination thereof: voice, gait

• How do you know that I am the same person that was

here last week?

• Did I provide a password?

• Did I provide a badge?

• Pretty much all trust boils down to biometric

authentication of one human by another.

Biometrics

• The only authentication factor that is not designed to be

transferable

• Clear separation of authentication and authorization

• Nothing to remember, nothing to carry around

• Can be very strong differentiator

• Unique-ish

Biometrics

• Fingerprint

• Handprint

• Retina

• Iris

• Face recognition

• Vein

• Vascular pattern in

back of hand

• Voiceprint

• Signature

• Typing

• Timing between

character sequences

• Gait recognition

• Heartbeat

• DNA

Biometrics

• General approach:

• Scan an analog sample

• Convert to set of digital features

• On enrollment save template of identifiable features

https://en.wikipedia.org/wiki/Biometrics

https://en.wikipedia.org/wiki/Biometrics

Biometrics

Simplified flow

Biometrics

• What happens in a remote authentication setting?

• What does the authenticating system actually get?

Biometrics

• Scenario A: Only the sensor is local to user.

• Feature extraction and matching happen on

authenticating system.

• Authenticating system has to trust Alice’s computer to

provide sensor data.

• All biometric features and template data are on a

central server.

Biometrics

• Scenario B: Sensing and feature extraction are local to

user.

• Matching happens on authenticating system.

• Authenticating system has to trust Alice’s computer to

provide authentic, fresh, unspoofed data.

• All biometric features and template data are still on a

central server.

Biometrics

• Scenario C: Sensing, feature extraction, and matching

are local to user.

• Only the result is communicated to the authenticating

system.

• Authenticating system has to trust Alice’s computer to

perform authentication.

• All biometric features and template data are isolated on

end users’ devices.

Biometrics

• Use in distributed systems requires biometric scanner

to be trusted and to have secure channel (authenticity,

privacy, integrity, no replay) to the server.

• Challenges

• Accuracy

• Ease of use (particularly enrollment)

• User acceptance

• Feature stability

Enrollment Issues

• Unlike passwords, hard to pre-enroll user

• Users must be enrolled interactively

• For many biometrics, getting good accuracy requires
multiple readings

• Build templates and test against registration

• Repeat

• Some templates simply tough (e.g. smooth fingerprint)

• “Goats”: Subjects who have consistently low match

scores against themselves.

How strong is a biometric?

• Non-adversarial

• False accept rate

• False reject rate

• Adversarial

• Intercept

• Spoofing

Non-adversarial testing
• False accept rate

• How many random trials before expectation of false accept > 0.5

• False reject rate
• How many random trials before expectation of false reject > 0.5

• Lower FAR = less tolerant of close matches
• Harder to attack

• Necessarily increases FRR

• Lower FRR = more tolerant of close matches
• Easier to use

• Necessarily increases FAR

• Since match is approximate can almost always tune for

one or other

• Equal error rate point where FAR = FRR

• Note, huge difference between a single false accept and

system-wide false accept (more templates means more

things you can accept against)

Biometrics Spoofing

• Biometrics are private, but not secret

• Users expose biometric instances everywhere

• Fingerprints, hand geometry, face, handwriting, iris,

gate, etc.

• Allows attacker to create biometric forgery

• Very hard to replace a biometric identifier

Biometrics Spoofing

• There are spoofing techniques for virtually all biometrics

Biometric Spoofing Mitigations

• Replay prevention

• Save previous image and reject if identical

• Tricky: can pick up and rotate to fool

• Improved validation prevision

• Verifier should have higher precision than forger

• Examples: pore detection, perspiration detection

• “Liveness” detection

• Examples: temperature, pulse, blood flow

Biometric Spoofing Mitigations

• Multi-modal

• Multiple biometric factors

• Multi-factor

• Biometric plus password

• Biometric plus token

Privacy issues

• Biometric identifiers can track your physical activities as

well as your virtual activities

• Some with crisp legal standing (fingerprint, DNA)

• Easy to match (even if can’t spoof)

• Very hard to obscure

Review

• Three types of authentication factors

• Password: Something you know

• Token: Something you have

• Biometrics: Something you are

• Each factor can be used independently, or combined for
multi-factor authentication

• Typically 2-factor

• Use a slow salted hash to store passwords

• PBKDF2, bcrypt, or scrypt

• Don’t make up your own!

