CSE 127:
Buffer Overflow

George Obaido, Ph.D.
UCSD

Spring 2022 Lecture 2

UCSanDiego

How did you spend your day?

Go to www.menti.com and use the code 4959 1104

Stack Buffer Overflows

My nephew got angry when Itold him: "The sky is the limit
for you".

Why:

My nephew got angry when Itold him: "The sky is the limit
for you".

Why:
He wants to be an astronaut.

When is a program secure?

- Formal approach: When it does exactly what it should

+ Not more
» Not less

+ But how do we know what it is supposed to do?

When is a program secure?

- Formal approach: When it does exactly what it should

+ Not more
» Not less

+ But how do we know what it is supposed to do?
+ Somebody tells us? (Do we trust them?)
« We write the code ourselves? (What fraction of the
software you use have you written?)

When is a program secure?

« Pragmatic approach: When it doesnt do bad things
- Often easier to specify a list of “bad”things:

« Delete or corrupt important files

+ Crash my system

« Send my password over the internet

+ Send threatening email to the professor

When is a program secure?

What if the program doesnt do bad things, but could?

Is it secure?

Weird machines

« Complex systems contain unintended functionality

Y Unintended
™, functionality,
%i.e. the "weird
i machine"

Normal, intended
functionality

e & AN

Expected, valid input Unexpected input

- Attackers can trigger this unintended functionality
- i.e. they are exploiting vulnerabilities

lssues with logging
(too little / too much)
sensitive data
Missing or broken

lssues with ibraries, Mg TOP 10 authentication
components, and Qe

dependencies Directory traversal

Vulnerability
SQL injection Cross-site seripting

Missing or broken lseues with web
authorization (access services and APls
control)

Source: https://www.biggerplate.com/mindmaps/84Hrd05h/my-
top-10-software-vulnerability

http://www.biggerplate.com/mindmaps/84Hrd05h/my-

What is a software vulnerability?

What is a software vulnerability?

- A bug is a program that allows an unprivileged user
capabilities that should be denied to them

What is a software vulnerability?

- A bug is a program that allows an unprivileged user
capabilities that should be denied to them

+ There are many types of vulnerabilities

- Today: bugs that violate “control flow integrity”

« Why? This lets an attacker run code on your computer!

What is a software vulnerability?

- A bug is a program that allows an unprivileged user
capabilities that should be denied to them

+ There are many types of vulnerabilities

- Today: bugs that violate “control flow integrity”

« Why? This lets an attacker run code on your computer!

- Typically these involve violating assumptions of the
programming language or its runtime

Exploiting vulnerabilities (the start)

« Dive into low-level details of how exploits work

+ How can a remote attacker get a victim program to
execute their code?

+ Threat model: Victim code is handling input that comes
from across a security boundary

+ What are some examples of this?
« Security policy: Want to protect integrity of execution

and confidentiality of data from being compromised by
malicious and highly skilled users of our system.

Scenario 1

As a proud script kid, Bob enjoys adding SQL code to an
application’s input form to gain access to resources and
make changes to data. What kind of attack is this?

a. SQL Injection

b. Buffer Overflow

c. Cross Site Scripting
d. None of the above

Go to www.menti.com and use the code: 9041 8629

http://www.menti.com/

Scenario 2
As a new intern at ABC Inc, Alice erroneously performed the
below into a memory for an array with 3 elements. What
kind of vulnerability is this?

int main() {
char s[3];
strepy (s, “welcome to my program'’) ;

}

a. SQL Injection

b. Buffer Overflow

c. Cross Site Scripting
d. None of the above

Go to www.menti.com and use the code: 9523 0539

http://www.menti.com/

Today: Stack buffer overflows

Lecture objectives:
« Understand how buffer overflow vulns can be exploited
- Identify buffer overflow and assess their impact
- Avoid introducing buffer overflow vulnerabilities

« Correctly fix buffer overflow activities

Buffer overflows

- Definition: An anomaly that occurs when a program writes
data beyond the boundary of a buffer

- Archetypal software vulnerability

« Ubiquitous in system software (C/C++)
+ OSes, web servers, web browsers, etc.

« Ifyour program crashes with memory faults, you probably
have a buffer overflow vulnerability

Why are they interesting?

+ Core concept — broad range of possible attacks

« Sometimes a single byte is all an attacker needs

« Ongoing arms race between defenders and attackers

« Co-evolution of defenses and exploitation techniques

How are they introduced?

How are they introduced?

« No automatic bounds checking in G/C++ ’\/

« C/C++ fails to detect whether a variable is within some
bounds.

ST A

)~
QWE ‘\‘E"’]

4[23

How are they introduced?

« No automatic bounds checking in C/C++

« C/C++ fails to detect whether a variable is within some
bounds.

« The problem is made more acute by the fact that many
C stdlib functions make it easy to go past bounds.

« String manipulation functions like gets(), strcpy(),
and strcat() all write to the destination buffer until
they encounter a terminating *\ 0’ byte in the input

How are they introduced?

« No automatic bounds checking in C/C++

« C/C++ fails to detect whether a variable is within some
bounds.

« The problem is made more acute by the fact that many
C stdlib functions make it easy to go past bounds.

- String manipulation functions like gets(), strcpy(),
and strcat() all write to the destination buffer until
they encounter a terminating *\ 0’ byte in the input

- Whoever is providing the input (often from the other
side of a security boundary) controls how much gets
written

Let’§ look at the finger daemon in BSD 4.3

* Finger server.

*/
#include <sys/types.h>
#include <netinet/in.h>

#include <stdio.h>
#include <ctype.h>

main(argc, argv)
char *argv[];

{
register char *sp;
char line[512]; <—
struct sockaddr_in sin;

int i, p(2], pid, status;
FILE *fp; /1 ﬂ%
char *av([4]; —

i = sizeof (sin);
if (getpeername(0, &sin, &i) < 0)
fatal(argv([0], "getpeername");
line[0] = '\0';
_§gets(line); <«
sp = line;
av[0] = "finger";
i=1;
while (1) {
while (isspace(*sp))
sp++;
if (!*sp)
break;
if (*sp == '/' && (sp[1l] == 'W' || sp[1l] == 'w')) {
sp += 2;
av[i++] = "-1";

}
if (*sp && lisspace(*sp)) {
av[i++] = sp;
while (*sp && lisspace(*sp))
SpH+;
*sp = '\0';

Morris worm

« This fingerd vuln was one of several
exploited by the Morris worm in 1988

The Morris Internet Worm

+ Created by Robert Morris, graduate
student at Cornell.

+ One of the first internet worms
- Devastating effect on the internet

+ Took over thousands of computers
and shut down large chunks of the
internet

« First conviction under CFAA

That was over 30+ years ago!

Surely buffer overflows are no longer a problem...

Project Zero

News and updates from the Project Zero team at Google

MMS Exploit Part 1: Introduction to the Samsung Qmage Codec and
Remote Attack Surface

Posted by Mateusz Jurczyk, Project Zero

This post is the first of a multi-part series capturing my journey from di: ing a vull le little-ki
Samsung image codec, to pleting a remote lick MMS attack that worked on the latest Samsung

flagship devices. New posts will be published as they are completed and will be linked here when complete.

[this post]
MMS Exploit Part 2: Effective Fuzzing of the Qmage Codec
MMS Exploit Part 3: Constructing the Memory Corruption Primitives

=
=
7
m
X
g
S
Y
i
=
a
=
=
7
o
=
3
@
2
(e}
i=]
3
=
=3
=
«
3
@
>
(2]
-
rel
i
3
o
i

MMS Exploit Part 5: Defeating Android ASLR, Getting RCE

Introduction

In January 2020, | reported a large volume of crashes in a custom Samsung codec called "Qmage”, present
in all Samsung phones since late 2014 (Android version 4.4.4+). This codec is written in C/C++ code, and is
baked deeply into the Skia graphics library, which is in turn the underlying engine used for nearly all graphics
operations in the Android OS. In other words, in addition to the well-known formats such as JPEG and PNG,
modern Samsung phones also natively support a proprietary Qmage format, typically denoted by the .qmg
file extension. It is automatically enabled for all apps which display images, making it a prime target for
remote attacks, as sending pictures is the core functionality of some of the most popular mobile apps.

In Wild Critical Buffer Overflow Vulnerability in Solaris
Can Allow Remote Takeover — CVE-2020-14871

November 04, 2020 | by Jacob Thompson

FireEye Mandiant has been investigating compromised Oracle Solaris machines in customer environments.
During our investigations, we discovered an exploit tool on a customer’s system and analyzed it to see how it
was attacking their Solaris environment. The FLARE team’s Offensive Task Force analyzed the exploit to
determine how it worked, reproduced the vulnerability on different versions of Solaris, and then reported it to
Oracle. In this blog post we present a description of the vulnerability, offer a quick way to test whether a
system may be vulnerable, and suggest mitigations and workarounds. Mandiant experts from the FLARE
team will provide more information on this vulnerability and how it wac iicad hw LINC1945 during a Nov. 12
webinar. Register today and start preparing questions, b : eritical-b rfl iity- sm from the audience at
in-solaris-can-allow-remote-takeover.html

the end of the session.

Vulnerability Discovery

The security vulnerability occurs in the Pluggable Authentication Modules (PAM) library. PAM enables a
Solaris application to authenticate users while allowing the system administrator to configure authentication
parameters (e.g., password complexity and expiration) in one location that is consistently enforced by all
applications.

The actual vulnerability is a classic stack-based buffer overflow located in the PAM parse_user_name function.
An abbreviated version of this function is shown in Figure 1.

How does a buffer overflow let you take over a

machine?

 Your program manipulates data

- Data manipulates your program

Sasuggasasas =

= ¥ | {)

Tnman SRCRS - =SSUR

,—Eﬁ\" IS EE IR
Bptdeennt:
WEME
R

What we need to know

« How C arrays work
« How memory is laid out
« How the stack and function calls work

« How to turn an array overflow into an exploit

How do C arrays work?

« What does a[idx] get compiled to?
* ¥((a)+(idx))

« What does the spec say?

+ 6.5.2.1 Array subscripting in ISO/IEC 9899:2017

+ There is no concept of bounds!

Linux process memory layout

Stack: Stores local

variables. OXFFFFFFFF
. 0xC0000000

Heap: Dynamic

memory for kesp

programmer to

allocate.

Data segment: Stores
global variables,
separated into
initialized and
uninitialized.

@x40000000

Text segment: Stores
the code being
executed.

0x08048000
0x00000000

