
CSE 127:
Buffer Overflow

George Obaido, Ph.D.

UCSD

Spring 2022 Lecture 2

How did you spend your day?

Go to www.menti.com and use the code 4959 1104

Stack Buffer Overflows

My nephew got angry when I told him: "The sky is the limit

for you".

Why:

My nephew got angry when I told him: "The sky is the limit

for you".

Why:

He wants to be an astronaut.

When is a program secure?

• Formal approach: When it does exactly what it should

• Not more
• Not less

• But how do we know what it is supposed to do?

When is a program secure?

• Formal approach: When it does exactly what it should

• Not more
• Not less

• But how do we know what it is supposed to do?

• Somebody tells us? (Do we trust them?)
• We write the code ourselves? (What fraction of the

software you use have you written?)

When is a program secure?

• Pragmatic approach: When it doesn’t do bad things

• Often easier to specify a list of “ bad” things:

• Delete or corrupt important files

• Crash my system
• Send my password over the internet
• Send threatening email to the professor

When is a program secure?

What if the program doesn’t do bad things, but could?

Is it secure?

Weird machines

• Complex systems contain unintended functionality

• Attackers can trigger this unintended functionality

• i.e. they are exploiting vulnerabilities

Source: https://www.biggerplate.com/mindmaps/84Hrd05h/my-

top-10-software-vulnerability

http://www.biggerplate.com/mindmaps/84Hrd05h/my-

What is a software vulnerability?

What is a software vulnerability?

• A bug is a program that allows an unprivileged user

capabilities that should be denied to them

What is a software vulnerability?

• A bug is a program that allows an unprivileged user

capabilities that should be denied to them

• There are many types of vulnerabilities

• Today: bugs that violate “control flow integrity”

• Why? This lets an attacker run code on your computer!

What is a software vulnerability?

• A bug is a program that allows an unprivileged user

capabilities that should be denied to them

• There are many types of vulnerabilities

• Today: bugs that violate “control flow integrity”

• Why? This lets an attacker run code on your computer!

• Typically these involve violating assumptions of the

programming language or its runtime

Exploiting vulnerabilities (the start)

• Dive into low-level details of how exploits work

• How can a remote attacker get a victim program to
execute their code?

• Threat model: Victim code is handling input that comes

from across a security boundary

• What are some examples of this?

• Security policy: Want to protect integrity of execution

and confidentiality of data from being compromised by

malicious and highly skilled users of our system.

Scenario 1

As a proud script kid, Bob enjoys adding SQL code to an

application’s input form to gain access to resources and

make changes to data. What kind of attack is this?

a. SQL Injection

b. Buffer Overflow

c. Cross Site Scripting

d. None of the above

Go to www.menti.com and use the code: 9041 8629

http://www.menti.com/

Scenario 2
As a new intern at ABC Inc, Alice erroneously performed the

below into a memory for an array with 3 elements. What

kind of vulnerability is this?

a. SQL Injection

b. Buffer Overflow

c. Cross Site Scripting

d. None of the above

Go to www.menti.com and use the code: 9523 0539

http://www.menti.com/

Today: Stack buffer overflows

Lecture objectives:

• Understand how buffer overflow vulns can be exploited

• Identify buffer overflow and assess their impact

• Avoid introducing buffer overflow vulnerabilities

• Correctly fix buffer overflow activities

Buffer overflows

• Definition: An anomaly that occurs when a program writes

data beyond the boundary of a buffer

• Archetypal software vulnerability

• Ubiquitous in system software (C/C++)

• OSes, web servers, web browsers, etc.

• If your program crashes with memory faults, you probably
have a buffer overflow vulnerability

Why are they interesting?

• Core concept → broad range of possible attacks

• Sometimes a single byte is all an attacker needs

• Ongoing arms race between defenders and attackers

• Co-evolution of defenses and exploitation techniques

How are they introduced?

How are they introduced?

• No automatic bounds checking in C/C++

• C/C++ fails to detect whether a variable is within some
bounds.

How are they introduced?

• No automatic bounds checking in C/C++

• C/C++ fails to detect whether a variable is within some
bounds.

• The problem is made more acute by the fact that many

C stdlib functions make it easy to go past bounds.

• String manipulation functions like gets(), strcpy(),

and strcat() all write to the destination buffer until

they encounter a terminating ‘\0 ’ byte in the input

How are they introduced?

• No automatic bounds checking in C/C++

• C/C++ fails to detect whether a variable is within some
bounds.

• The problem is made more acute by the fact that many

C stdlib functions make it easy to go past bounds.

• String manipulation functions like gets(), strcpy(),

and strcat() all write to the destination buffer until

they encounter a terminating ‘\0 ’ byte in the input

• Whoever is providing the input (often from the other

side of a security boundary) controls how much gets

written

Let’s look at the finger daemon in BSD 4.3

←

←

Morris worm

• This fingerd vuln was one of several

exploited by the Morris worm in 1988

• Created by Robert Morris, graduate

student at Cornell.

• One of the first internet worms

• Devastating effect on the internet

• Took over thousands of computers

and shut down large chunks of the

internet

• First conviction under CFAA

That was over 30+ years ago!

Surely buffer overflows are no longer a problem...

How does a buffer overflow let you take over a

machine?

• Your program manipulates data

• Data manipulates your program

What we need to know

• How C arrays work

• How memory is laid out

• How the stack and function calls work

• How to turn an array overflow into an exploit

How do C arrays work?

• What does a[idx] get compiled to?

• *((a)+(idx))

• What does the spec say?

• 6.5.2.1 Array subscripting in ISO/IEC 9899:2017

• There is no concept of bounds!

Linux process memory layout

• Stack: Stores local

variables.

• Heap: Dynamic

memory for

programmer to

allocate.

• Data segment: Stores

global variables,

separated into

initialized and

uninitialized.

• Text segment: Stores

the code being

executed.

