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Buffer overflow mitigations

• Avoid unsafe functions: Strcmp, strcpy, gets, etc

→ Memory writable or executable, not both (W^X)

• Address space layout randomization



W^X: write XOR execute

• Goal: Prevent execution of shell code from the stack

• Insight: Use memory page permission bits

• Use MMU to ensure memory cannot be both writeable 

and executable at the same time

• Many names for same idea:

• XN: eXecute Never

• W^X: Write XOR eXecute

• DEP: Data Execution Prevention
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W^X tradeoffs

• Easy to deploy: No code changes or recompilation

• Fast: Enforced in hardware

• Downside: What do you do on embedded devices?

• Some pages need to be both writeable and executable

• Why?



How can we defeat W^X?

• Can still write to return address stored on the stack

• Jump to existing code

• Search executable for code that does what you want

• E.g. if program calls system(“/bin/sh”) you’re done

• libc is a good source of code (return-into-libc attacks)





Address Space Layout Randomization (ASLR)

• Traditional exploits need precise addresses

• stack-based overflows: shellcode

• return-into-libc: library addresses

• Insight: Make it harder for attacker to 

guess location of shellcode/libc by 

randomizing the address of different 

memory regions



How much do we randomize?
32-bit PaX ASLR (x86)



ASLR Tradeoffs

• Intrusive: Need compiler, liker, loader support

• Process layout must be randomized

• Programs must be compiled to not have absolute jumps

• Incurs overhead: Increases code size and performance 

overhead

• Also mitigates heap-based overflow attacks



When do we randomize?

Many options.

• At boot?

• At compile/link time?

• At run/load time?

What’s the tradeoff?

• Not useful for forensic analysis



How can we defeat ASLR?

• -fno-pie binaries have fixed code and data addresses

• Enough to carry out control flow hijacking attacks

• Each region has random offset, but layout is fixed

• Single address in a region leaks every address in region



Today

• Return-oriented programming

• Heap corruption

• Isolation



Return-Oriented Programming (ROP)

• Idea: make shellcode out of existing code

• Gadgets: code sequences ending in ret instruction

• Overwrite saved %eip on stack to pointer to first gadget, then

second gadget, etc.



Return-Oriented Programming

• Idea: make shellcode out of existing code

• Gadgets: code sequences ending in ret instruction

• Overwrite saved %eip on stack to pointer to first gadget, 

then second gadget, etc.

• Where do you often find ret assembly instructions?

• End of function (inserted by compiler)



One ret, multiple gadgets

b8 01 00 00 00 5b c9 c3 =

mov$0x1,%eax 

pop %ebx 

leave

ret



One ret, multiple gadgets

b8 01 00 00 00 5b c9 c3 =

add %al,(%eax) 

pop %ebx

leave  

ret



One ret, multiple gadgets

b8 01 00 00 00 5b c9 c3 = add %bl,-0x37(%eax) 

ret



One ret, multiple gadgets

b8 01 00 00 00 5b c9 c3 =
pop %ebx 

leave 

ret



One ret, multiple gadgets

b8 01 00 00 00 5b c9 c3 = leave  

ret



One ret, multiple gadgets

b8 01 00 00 00 5b c9 c3 = ret



Why ret?

• Attacker overflows stack allocated buffer

• What happens when function returns?

• Restore stack frame

• leave = movl %ebp, %esp; pop %ebp

• Return

• ret = pop %eip

• If instruction sequence at %eip ends in ret what do we 

do?



%esp

v1
pop %edx 
ret

What happens if this is what we 

overflow the stack with?



%esp

0xdeadbeef

0x08049bbc

0x08049b63: ret
...

0x08049bbc: pop %edx 
0x08049bbd: ret

relevant code:

%eip 0x08049b62: nop

%edx = 0x00000000

relevant register(s):

relevant stack:



%esp

0xdeadbeef

0x08049bbc

0x08049b63: ret
...

0x08049bbc: pop %edx 
0x08049bbd: ret

%eip

relevant code:

0x08049b62: nop
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relevant stack:
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0x08049b63: ret
...
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0x08049bbd: ret
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relevant register(s):
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%esp
0xdeadbeef

0x08049bbc

0x08049b63: ret
...

0x08049bbc: pop %edx 
0x08049bbd: ret

relevant code:

0x08049b62: nop

%eip

%edx = 0xdeadbeef

relevant register(s):

relevant stack:



This is a RO P gadget!

%esp

v1
pop %edx 
ret

movl v1, %edx



How do you use this as an attacker?

• Overflow the stack with values and addresses to such 

gadgets to express your program

• e.g. if shellcode needs to write a value to %edx, use the 

previous gadget



Can express arbitrary programs



Can find gadgets automatically



How do you mitigate ROP?

Observation: In almost all the attacks we looked at, the

attacker is overwriting jump targets that are in memory

(return addresses and function pointers).

• One ROP mitigation could be a Address Space

Layout Randomization (ASLR)



Today

• Return-oriented programming

→ Heap corruption

• Isolation



Memory management in C/C++

• C uses explicit memory management

• Data is allocated and freed dynamically

• Dynamic memory is accessed via pointers

• You are on your own

• If system does not track memory liveness

• If system doesn’t ensure that pointers are live or valid

• By default, C has same issues



The heap

• Dynamically allocated data stored on the 

“heap”

• Heap manager exposes API for allocating 

and deallocating memory

• malloc() and free()

• API invariant: All memory allocated by

malloc() has to be released by 

corresponding call to free()



Heap management

• Organized in contiguous chunks of memory

• Basic unit of memory

• Can be free or in use

• Metadata: size + flags

• Allocated chunk

• Heap layout evolves with malloc()s and free()s

• Chunks may get allocated and freed

• Free chunks are stored in doubly linked lists (bins)

• Different kinds of bins: fast, unsorted, small, large, . . .



How can things go wrong?

• Forget to free memory

• Write/read memory we shouldn’t have access to: 

Overflow code pointers on the heap

• Use after free: Use pointers that point to freed object

• Double free: Free already freed objects



Most important: heap corruption

• Can bypass security checks (data-only attacks)

• e.g. isAuthenticated, buffer_size, isAdmin, etc.

• Can overwrite heap management data

• Corrupt metadata in free chunks

• Program the heap weird machine



Use-after-free in C++

Victim: Free object: free(obj);

Attacker: Overwrite the vtable of the object so entry 

(obj->vtable[0]) points to attacker gadget

Victim: Use dangling pointer: obj->foo()



Dangling pointers and memory leaks

• Dangling pointer: Pointer points to a memory location that no longer 

exists

• Memory leaks (tardy free) Memory in heap that can no longer be 

accessed

int main(){
int *arr1 = malloc(sizeof(int));
*arr1 = 2; 
printf(“%d/n”, *arr1)
free(arr1);
arr1 = NULL //Solution: Set to Null 
return 0;

}

int main(int argc, char *arg[]){
int *arr1 = malloc(sizeof(int));
*arr1 = 2; 
printf(“%d/n”, *arr1)
free(arr1);//solution: free the memory or 

deallocate the memory
arr1 = NULL
return 0;

}

Dangling pointer
Memory Leak







Heap exploitation mitigations

• Safe heap implementations

• Safe unlinking

• Cookies/canaries on the heap

• Heap integrity check on malloc and free

• Use Rust or a safe garbage collected language, 

such as Julia, Ruby, etc.



What does all this tell us?

If you’re trying to build a secure system, 

use a memory and type-safe language.



Today

• Understand basic principles for building secure systems

• Understand mechanisms used to build secure systems



Running untrusted code

We often need to run buggy or untrusted code.



Running untrusted code

We often need to run buggy or untrusted code.

• Desktop applications

• Mobile apps

• Untrusted user code

• Web sites, Javascript, browser extensions

• PDF viewers, email clients

• VMs on cloud computing infrastructure



Systems must be designed to be resilient in the face of 

vulnerabilities and malicious users.



Principles of secure system design

• Least privilege

• Privilege separation

• Complete mediation

• Fail safe/closed

• Defense in depth

• Keep it simple


