
CSE 127:

Introduction to Security

Memory safety and Isolation

George Obaido

UCSD

Spring 2022 Lecture 5

Some slides from Kirill Levchenko, Stefan Savage, Nadia Heninger, Stephen Checkoway,

Hovav Shacham, David Wagner, Deian Stefan, Dan Boneh, and Zakir Durumeric

Buffer overflow mitigations

• Avoid unsafe functions: Strcmp, strcpy, gets, etc

→ Memory writable or executable, not both (W^X)

• Address space layout randomization

W^X: write XOR execute

• Goal: Prevent execution of shell code from the stack

• Insight: Use memory page permission bits

• Use MMU to ensure memory cannot be both writeable

and executable at the same time

• Many names for same idea:

• XN: eXecute Never

• W^X: Write XOR eXecute

• DEP: Data Execution Prevention

Recall our memory layout

kernel

user stack

shared libs

runtime heap

static data

segment

text segment

unused

rw

rx

rw

rw

rx

saved ret

saved ebp

buf[0-3]

%ebp

%esp

Recall our memory layout

kernel

user stack

shared libs

runtime heap

static data

segment

text segment

unused

rw

rx

rw

rw

rx

shellcode

hijacked ret

%ebp

%esp

W^X tradeoffs

• Easy to deploy: No code changes or recompilation

• Fast: Enforced in hardware

• Downside: What do you do on embedded devices?

• Some pages need to be both writeable and executable

• Why?

How can we defeat W^X?

• Can still write to return address stored on the stack

• Jump to existing code

• Search executable for code that does what you want

• E.g. if program calls system(“/bin/sh”) you’re done

• libc is a good source of code (return-into-libc attacks)

Address Space Layout Randomization (ASLR)

• Traditional exploits need precise addresses

• stack-based overflows: shellcode

• return-into-libc: library addresses

• Insight: Make it harder for attacker to

guess location of shellcode/libc by

randomizing the address of different

memory regions

How much do we randomize?
32-bit PaX ASLR (x86)

ASLR Tradeoffs

• Intrusive: Need compiler, liker, loader support

• Process layout must be randomized

• Programs must be compiled to not have absolute jumps

• Incurs overhead: Increases code size and performance

overhead

• Also mitigates heap-based overflow attacks

When do we randomize?

Many options.

• At boot?

• At compile/link time?

• At run/load time?

What’s the tradeoff?

• Not useful for forensic analysis

How can we defeat ASLR?

• -fno-pie binaries have fixed code and data addresses

• Enough to carry out control flow hijacking attacks

• Each region has random offset, but layout is fixed

• Single address in a region leaks every address in region

Today

• Return-oriented programming

• Heap corruption

• Isolation

Return-Oriented Programming (ROP)

• Idea: make shellcode out of existing code

• Gadgets: code sequences ending in ret instruction

• Overwrite saved %eip on stack to pointer to first gadget, then

second gadget, etc.

Return-Oriented Programming

• Idea: make shellcode out of existing code

• Gadgets: code sequences ending in ret instruction

• Overwrite saved %eip on stack to pointer to first gadget,

then second gadget, etc.

• Where do you often find ret assembly instructions?

• End of function (inserted by compiler)

One ret, multiple gadgets

b8 01 00 00 00 5b c9 c3 =

mov$0x1,%eax

pop %ebx

leave

ret

One ret, multiple gadgets

b8 01 00 00 00 5b c9 c3 =

add %al,(%eax)

pop %ebx

leave

ret

One ret, multiple gadgets

b8 01 00 00 00 5b c9 c3 = add %bl,-0x37(%eax)

ret

One ret, multiple gadgets

b8 01 00 00 00 5b c9 c3 =
pop %ebx

leave

ret

One ret, multiple gadgets

b8 01 00 00 00 5b c9 c3 = leave

ret

One ret, multiple gadgets

b8 01 00 00 00 5b c9 c3 = ret

Why ret?

• Attacker overflows stack allocated buffer

• What happens when function returns?

• Restore stack frame

• leave = movl %ebp, %esp; pop %ebp

• Return

• ret = pop %eip

• If instruction sequence at %eip ends in ret what do we

do?

%esp

v1
pop %edx
ret

What happens if this is what we

overflow the stack with?

%esp

0xdeadbeef

0x08049bbc

0x08049b63: ret
...

0x08049bbc: pop %edx
0x08049bbd: ret

relevant code:

%eip 0x08049b62: nop

%edx = 0x00000000

relevant register(s):

relevant stack:

%esp

0xdeadbeef

0x08049bbc

0x08049b63: ret
...

0x08049bbc: pop %edx
0x08049bbd: ret

%eip

relevant code:

0x08049b62: nop

%edx = 0x00000000

relevant register(s):

relevant stack:

%esp
0xdeadbeef

0x08049bbc

0x08049b63: ret
...

0x08049bbc: pop %edx
0x08049bbd: ret

relevant code:

0x08049b62: nop

%eip

%edx = 0x00000000

relevant register(s):

relevant stack:

%esp
0xdeadbeef

0x08049bbc

0x08049b63: ret
...

0x08049bbc: pop %edx
0x08049bbd: ret

relevant code:

0x08049b62: nop

%eip

%edx = 0xdeadbeef

relevant register(s):

relevant stack:

This is a RO P gadget!

%esp

v1
pop %edx
ret

movl v1, %edx

How do you use this as an attacker?

• Overflow the stack with values and addresses to such

gadgets to express your program

• e.g. if shellcode needs to write a value to %edx, use the

previous gadget

Can express arbitrary programs

Can find gadgets automatically

How do you mitigate ROP?

Observation: In almost all the attacks we looked at, the

attacker is overwriting jump targets that are in memory

(return addresses and function pointers).

• One ROP mitigation could be a Address Space

Layout Randomization (ASLR)

Today

• Return-oriented programming

→ Heap corruption

• Isolation

Memory management in C/C++

• C uses explicit memory management

• Data is allocated and freed dynamically

• Dynamic memory is accessed via pointers

• You are on your own

• If system does not track memory liveness

• If system doesn’t ensure that pointers are live or valid

• By default, C has same issues

The heap

• Dynamically allocated data stored on the

“heap”

• Heap manager exposes API for allocating

and deallocating memory

• malloc() and free()

• API invariant: All memory allocated by

malloc() has to be released by

corresponding call to free()

Heap management

• Organized in contiguous chunks of memory

• Basic unit of memory

• Can be free or in use

• Metadata: size + flags

• Allocated chunk

• Heap layout evolves with malloc()s and free()s

• Chunks may get allocated and freed

• Free chunks are stored in doubly linked lists (bins)

• Different kinds of bins: fast, unsorted, small, large, . . .

How can things go wrong?

• Forget to free memory

• Write/read memory we shouldn’t have access to:

Overflow code pointers on the heap

• Use after free: Use pointers that point to freed object

• Double free: Free already freed objects

Most important: heap corruption

• Can bypass security checks (data-only attacks)

• e.g. isAuthenticated, buffer_size, isAdmin, etc.

• Can overwrite heap management data

• Corrupt metadata in free chunks

• Program the heap weird machine

Use-after-free in C++

Victim: Free object: free(obj);

Attacker: Overwrite the vtable of the object so entry

(obj->vtable[0]) points to attacker gadget

Victim: Use dangling pointer: obj->foo()

Dangling pointers and memory leaks

• Dangling pointer: Pointer points to a memory location that no longer

exists

• Memory leaks (tardy free) Memory in heap that can no longer be

accessed

int main(){
int *arr1 = malloc(sizeof(int));
*arr1 = 2;
printf(“%d/n”, *arr1)
free(arr1);
arr1 = NULL //Solution: Set to Null
return 0;

}

int main(int argc, char *arg[]){
int *arr1 = malloc(sizeof(int));
*arr1 = 2;
printf(“%d/n”, *arr1)
free(arr1);//solution: free the memory or

deallocate the memory
arr1 = NULL
return 0;

}

Dangling pointer
Memory Leak

Heap exploitation mitigations

• Safe heap implementations

• Safe unlinking

• Cookies/canaries on the heap

• Heap integrity check on malloc and free

• Use Rust or a safe garbage collected language,

such as Julia, Ruby, etc.

What does all this tell us?

If you’re trying to build a secure system,

use a memory and type-safe language.

Today

• Understand basic principles for building secure systems

• Understand mechanisms used to build secure systems

Running untrusted code

We often need to run buggy or untrusted code.

Running untrusted code

We often need to run buggy or untrusted code.

• Desktop applications

• Mobile apps

• Untrusted user code

• Web sites, Javascript, browser extensions

• PDF viewers, email clients

• VMs on cloud computing infrastructure

Systems must be designed to be resilient in the face of

vulnerabilities and malicious users.

Principles of secure system design

• Least privilege

• Privilege separation

• Complete mediation

• Fail safe/closed

• Defense in depth

• Keep it simple

