
CSE 127:

Introduction to Security

Isolation

George Obaido

UCSD

Winter 2022 Lecture 6

Some slides from Kirill Levchenko, Stefan Savage, Nadia Heninger, Stephen Checkoway, Hovav Shacham, David

Wagner, Deian Stefan, Dan Boneh, and Zakir Durumeric

Principles of secure system design

1. Least privilege

2. Privilege separation

3. Complete mediation

4. Fail safe/secure

5. Defense in depth

6. Keep it simple

1. Principle of Least Privilege

1. Principle of Least Privilege

• Users should only have access to the data and resources

needed to provide authorized tasks

Principle of Least Privilege

• Users should only have access to the data and

resources needed to provide authorized tasks

• Examples:

• Faculty can only change grades for classes they teach

• Only employees with background checks have access to

classified documents

2. Principle of privilege separation

2. Principle of privilege separation

Least privilege requires dividing a system into parts to which we can

limit access:

• Break system into compartments

• Ensure each compartment is isolated

• Ensure each compartment runs with least privilege

• Treat compartment interface as trust boundary

Example: Multi-user operating system

In this system:

• Users can execute programs/processes

• Processes can access resources

Multi-user OS security properties

• Memory isolation

• Process should not be able to access

another process’s memory.

• Resource isolation

• Process should only be able to access

certain resources.

Process memory isolation

• How are individual processes

memory-isolated from each other?

• Each process gets its own virtual address space,

managed by the operating system

• Memory addresses used by processes are virtual

addresses (VAs) not physical addresses (PAs)

• The CPU memory management unit (MMU) does the

translation

3. Principle of complete mediation

3. Principle of complete mediation

• Every memory access goes through address translation

• Load, store, instruction fetch

• Virtual memory allows address space much larger than

physical memory

• Also means that operating system mediates all process

memory accesses and enforces access control policy

Resource isolation in the Unix security model

In Unix, everything is a file: files, sockets, pipes, hardware devices...

• Permissions to access files are granted based on user IDs

• Every user has a unique UID

• Access Operations: Read, Write, Execute

• Each file has an access control list (ACL)

• Grants permissions to users based on UIDs and roles

(owner, group, other)

• root (UID 0) can access everything

Role-Based Access Control

In a general access control system we can specify permissions in a matrix:

hw/ exams/ grades/ lectures/

cse127-instr r/w r/w r/w r/w

cse127-tas r/w read - r/w

cse127-students read - - read

cse-students - - - read

ACLs vs. Capabilities

ACL: System checks where subject is on

list of users with access to the object.

• Permissions stored by column of

access control matrix

Capabilities: Subject presents an
unforgeable ticket that grants access to an

object. System doesn’t care who subject

is, just that they have access.

• Row of access control matrix

Unix file permissions are a simplified ACL

rabeshi@login:/cse/htdocs/classes/wi21/cse127-a$ l s - l total 32

-rw-rw-r-- 1 rabeshi cse127-a-wi 18660 Jan 14 00:34 index.html

drwxrwxr-x 2 rabeshi cse127-a-sp
drwxrwxr-x 2 rabeshi cse127-a-sp
drwxrwsr-x 3 rabeshi cse127-a-sp

4096 April 13 08:42 pa
4096 April 13 19:57 resources
4096 April 14 00:34 slides

• Permissions grouped by user owner, group owner, other

• Operations: read, write, execute

Process UIDs

Process permissions are determined by UID of user who runs it unless changed.

• Real user ID (RUID)

• Used to determine which user started the process

• Typically same as the user ID of parent process

• Effective user ID (EUID)

• Determines the permissions for process

• Can be different from RUID (e.g. because setuid bit on the file being executed)

• Saved user ID (SUID)

• EUID prior to change

Demo:
https://linuxhint.com/difference-between-real-effective-user-id-in-linux-os/

https://linuxhint.com/difference-between-real-effective-user-id-in-linux-os/

setuid

• A program can have a setuid bit set in its permissions

• This impacts fork and exec

• Typically inherit three IDs of parent

• If setuid bit set: use UID of file owner as EUID

-rwsr-xr-x 1 root root 54256 Mar 26 2019 $ ls -ltr /usr/bin/passwd

-rwsr-xr-x 1 root root 54256 Mar 26 2019 $ passwd

Overview of Unix file security mechanism

• Pro: Simple and flexible

• Con:

• Nearly all system operations require root access.

• In practice, common to run many services as root. This

violates principle of least privilege and increases attack

surface.

Kernel isolation

• Kernel is isolated from user

processes

• Separate page tables

• Processor privilege levels

ensure userspace code
cannot use privileged

instructions

• Interface between userspace

and kernel: system calls

Example: Smartphone OS design

Does the threat model for a smartphone differ from a desktop?

Mobile Security vs Computer Security

Android process isolation

• Android uses Linux and sandboxing for

isolation.

• Each app runs under its own UID.

• Apps can request permissions, which are

basically capabilities.

• Android has a well-developed notion of app/app

access control.

• Heavily relies on user’s consent, for better or

worse.

Software fault isolation (SFI)

Placing untrusted components in their own address space

provides isolation, but comes with overhead.

Software fault isolation wants to partition apps running in the

same address space.

• Kernel modules should not corrupt kernel

• Native libraries should not corrupt JVM

Software fault isolation (SFI)

Placing untrusted components in their own address space provides

isolation, but comes with overhead.

Software fault isolation wants to partition apps running in the same

address space.

• Kernel modules should not corrupt kernel

• Native libraries should not corrupt JVM

SFI approach: Partition process memory into segments

• Memory isolation: Instrument all loads and stores

• Control flow integrity: Ensure all control flow is restricted to

CFG that instruments loads/stores

• Complete mediation: Disallow privileged instructions

• Syscall-like interface between isolated code

Example: Browser design

What’s the threat model?

What are the assets?

What security properties do we want to preserve?

Chrome Security Architecture

Pre-2006 Modern

Modern Browser Security Model

• Browser process

• Handles the privileged parts of browser (network requests,

address bar, bookmarks)

• Renderer process

• Handles untrusted attacker content: JSengine, DOM, etc.

• Communication restricted to remote procedure calls

• Many other processes (GPU, plugin, etc.)

Virtual Machines

• Virtual machines allow a single piece of

hardware to emulate multiple

machines

• Useful for cloud computing and also for

isolation

• Intel has hardware support for x86

virtualization: VMM support in

hardware so that operating system
can be run in ring 0 without requiring VMM

intervention for syscalls

VMs and Isolation

VM Isolation for the cloud:

• VMs from different customers may run on the same machine

• Hypervisor tries to isolate VMs to minimize information leaks

VM Isolation for the end user:

• Qubes OS: A desktop OS where everything is a VM.

• Every window frame UI identifies VM source.

Hardware isolation: Secure enclaves

• Intel Software Guard eXtensons (SGX)

• Runs trusted code in an enclave

• Enclave memory encrypted and only

decrypted in the CPU

• Can’t be read even by malicious OS

• Why do we want to protect a program

against a malicious OS?

Hardware isolation: Secure enclaves

• Intel Software Guard eXtensons (SGX)

• Runs trusted code in an enclave

• Enclave memory encrypted and only decrypted in the CPU

• Can’t be read even by malicious OS

• Why do we want to protect a program against a malicious OS?

Example applications:

• DRM (Digital Rights Management)

• Secure remote computation

• Protecting crypto keys or sensitive information

iOS Secure Boot

• Apple devices use a secure enclave coprocessor as part of its boot

chain.

• Hardware-based root of trust: code and code-verifying keys baked into

boot ROM (read-only memory).

• Each step of the boot process verifies that the bootloader, kernel are

signed by Apple.

• What are the positives and negatives of this kind of design?

Physical isolation: Air gap

• To ensure that a misbehaving app cannot harm the rest of the system, you could run it on

physically isolated system.

• What kinds of systems would you do this for? What are the merits/demerits?

4. Principles: Fail-safe and Fail-secure

4. Principles: Fail-safe and Fail-secure

• A fail-secure system is one that, in the event of a specific type of failure, responds

in a way such that access or data are denied.

• Related: a fail-safe system, in the event of failure, causes no harm, or at least

a minimum of harm, to other systems or to personnel.

• Fail-secure and fail-safe may suggest different outcomes

• For example, if a building catches fire, fail-safe systems would unlock doors to

ensure quick escape and allow firefighters inside, while fail-secure would lock

doors to prevent unauthorized access to the building.

5. Principles: Defense in depth

5. Principles: Defense in depth

We do not expect any of our defenses to be perfect.

Last. Principles: Keep it simple

6. Principles: Keep it simple

We have to trust some components of our system.

In general keeping the Trusted Computing Base small and simple makes it

easier to verify.

• In theory a hypervisor can be less complex than a full host operating

system.

• A small OS kernel has less attack surface than one with many features.

Software and hardware isolation techniques

• Memory isolation

• Resource isolation and access control

• System call interposition

• Sandboxing

• Containers

• Virtualization

• Secure enclaves

• Physical air gap

Lesson: Complete isolation is often inappropriate;
applications need to communicate through regulated interfaces

Principles of secure system design

1. Least privilege

2. Privilege separation

3. Complete mediation

4. Fail safe/closed

5. Defense in depth

6. Keep it simple

