
CSE 127: Computer Security

Web Intro

George Obaido

UCSD

Winter 2022

Some slides from Nadia Heninger, Deian Stefan, Zakir Durumeric, Dan

Boneh, and Kirill Levchenko

Brief: Mitigating side channels

Next: Web Intro

https://www.microsoft.com/en-us/research/video/verifying-constant-time-implementations/

Mitigating Cache-based Side Channels

• There’s never a completion solution to avoiding side-channel

attacks. A few mitigations are:

• Application-specific: Disable resource sharing, or isolate

applications. One example is page coloring.

• Compiler-based: One example is Biscuit, developed at Georgia

Tech. Able to guess misses and alerts the CPU scheduler about

abnormal behaviour.

• Redesigning Hardware: Hard due to large overheads involved.

• Other solutions are ASLR (although, easy to defeat by Spectre

and Meltdown)

Overall, secure algorithms still need secure implementation.

https://arxiv.org/pdf/2003.03850.pdf

Lecture objectives

• Basic understanding of how the web works

• Understand relevant attacker models

• Understand browser same-origin policy

HTTP protocol

• Protocol from 1989 that allows fetching of

resources (e.g., HTML documents)

• Resources have a uniform resource location (URL):

HTTP protocol

• Protocol from 1989 that allows fetching of

resources (e.g., HTML documents)

• Resources have a uniform resource location (URL):

HTTP protocol

https://cseweb.ucsd.edu:443/classes/fa19/cse127-ab/lectures?nr=7&lang=en#slides

• Protocol from 1989 that allows fetching of

resources (e.g., HTML documents)

• Resources have a uniform resource location (URL):

HTTP protocol

https://cseweb.ucsd.edu:443/classes/fa19/cse127-ab/lectures?nr=7&lang=en#slides

scheme

• Protocol from 1989 that allows fetching of

resources (e.g., HTML documents)

• Resources have a uniform resource location (URL):

HTTP protocol

domain

https://cseweb.ucsd.edu:443/classes/fa19/cse127-ab/lectures?nr=7&lang=en#slides

scheme

• Protocol from 1989 that allows fetching of

resources (e.g., HTML documents)

• Resources have a uniform resource location (URL):

HTTP protocol

domain

https://cseweb.ucsd.edu:443/classes/fa19/cse127-ab/lectures?nr=7&lang=en#slides

scheme port

• Protocol from 1989 that allows fetching of

resources (e.g., HTML documents)

• Resources have a uniform resource location (URL):

HTTP protocol

domain path

https://cseweb.ucsd.edu:443/classes/fa19/cse127-ab/lectures?nr=7&lang=en#slides

scheme port

• Protocol from 1989 that allows fetching of

resources (e.g., HTML documents)

• Resources have a uniform resource location (URL):

HTTP protocol

domain path

https://cseweb.ucsd.edu:443/classes/fa19/cse127-ab/lectures?nr=7&lang=en#slides

scheme port query string

• Protocol from 1989 that allows fetching of

resources (e.g., HTML documents)

• Resources have a uniform resource location (URL):

HTTP protocol

domain path fragment id

https://cseweb.ucsd.edu:443/classes/fa19/cse127-ab/lectures?nr=7&lang=en#slides

scheme port query string

• Protocol from 1989 that allows fetching of

resources (e.g., HTML documents)

• Resources have a uniform resource location (URL):

domain

https://youtube.com/watch?v=iYM2zFP3Zn0

scheme query string

HTTP protocol

• Clients and servers communicate by exchanging

individual messages (as opposed to a stream of

data).

http://example.com

http://example.com/

HTTP protocol

• Clients and servers communicate by exchanging

individual messages (as opposed to a stream of

data).

http://example.com

http://example.com/

HTTP protocol

• Clients and servers communicate by exchanging

individual messages (as opposed to a stream of

data).

http://example.com

http://example.com/

HTTP protocol

• Clients and servers communicate by exchanging

individual messages (as opposed to a stream of

data).

http://example.com

http://example.com/

HTTP protocol

• Clients and servers communicate by exchanging

individual messages (as opposed to a stream of

data).

http://example.com

http://example.com/

HTTP protocol

• Clients and servers communicate by exchanging

individual messages (as opposed to a stream of

data).

http://example.com

http://example.com/

HTTP protocol

• Clients and servers communicate by exchanging

individual messages (as opposed to a stream of

data).

http://example.com

http://example.com/

HTTP protocol

• Clients and servers communicate by exchanging

individual messages (as opposed to a stream of

data).

http://example.com

http://example.com/

HTTP protocol

• Clients and servers communicate by exchanging

individual messages (as opposed to a stream of

data).

http://example.com

http://example.com/

HTTP protocol

• Clients and servers communicate by exchanging

individual messages (as opposed to a stream of

data).

http://example.com

http://example.com/

Anatomy of a request

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

http://www.example.com/
http://www.google.com/?q=dingbats

Anatomy of a request

method

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

http://www.example.com/
http://www.google.com/?q=dingbats

Anatomy of a request

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

method path

http://www.example.com/
http://www.google.com/?q=dingbats

Anatomy of a request

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

method path version

http://www.example.com/
http://www.google.com/?q=dingbats

Anatomy of a request

method path version

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

headers Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

http://www.example.com/
http://www.google.com/?q=dingbats

Anatomy of a request

method path version

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

headers Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

body

(empty)

http://www.example.com/
http://www.google.com/?q=dingbats

Anatomy of a response

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: ...
Content-Length: 2543

<html>Some data... whatever ... </html>

Anatomy of a response

status code

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: ...
Content-Length: 2543

<html>Some data... whatever ... </html>

Anatomy of a response

status code

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive

headers Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: ...
Content-Length: 2543

<html>Some data... whatever ... </html>

Anatomy of a response

status code

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive

headers Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: ...
Content-Length: 2543

<html>Some data... whatever ... </html>body

• DELETE: Delete the specified URL.

Many HTTP methods

• GET: Get the resource at the specified URL.

• POST: Create new resource at URL with payload.

• PUT: Replace current representation of the target

resource with request payload.

• PATCH: Update part of the resource.

In practice: it’s a mess

• GETs should NOT change server state; in practice,

they sometimes do

• Old browsers don’t send PUT, PATCH, and DELETE

➤ So, almost all side-effecting requests are POSTs; real

method hidden in a header or request body

In practice: we need state

In practice: we need state

• HTTP cookie: small piece of data that a server

sends to the browser, who stores it and sends it

back with subsequent requests

• What is this useful for?

➤ Session management: logins, shopping carts,

etc.

➤ Personalization: user preferences, themes, etc.

➤ Tracking: recording and analyzing user behavior

In practice: we need state

• HTTP cookie: small piece of data that a server

sends to the browser, who stores it and sends it

back with subsequent requests

• What is this useful for?

➤ Session management: logins, shopping carts, etc.

Personalization: user preferences, themes, etc.

Tracking: recording and analyzing user behavior

➤

➤

Setting cookies in response

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: trackingID=3272923427328234
Set-Cookie: userID=F3D947C2
Content-Length: 2543

<html>Some data... whatever ... </html>

Setting cookies in response

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: trackingID=3272923427328234
Set-Cookie: userID=F3D947C2
Content-Length: 2543

<html>Some data... whatever ... </html>

Sending cookie with each request

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Cookie: trackingID=3272923427328234
Cookie: userID=F3D947C2
Host: www.example.com
Referer: http://www.google.com?q=dingbats

http://www.example.com/
http://www.google.com/?q=dingbats

Sending cookie with each request

GET /index.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Cookie: trackingID=3272923427328234
Cookie: userID=F3D947C2
Host: www.example.com
Referer: http://www.google.com?q=dingbats

http://www.example.com/
http://www.google.com/?q=dingbats

Going from HTTP response to code execution…

Basic browser execution model

• Each browser window….

➤ Loads content

Parses HTML and runs Javascript

Fetches sub resources (e.g., images, CSS, JavaScript)

Respond to events like onClick, onMouseover,

onLoad, setTimeout

➤

➤

➤

Nested execution model

• Windows may contain frames from different sources

➤ Frame: rigid visible division

iFrame: floating inline frame➤

• Why use frames?

➤ Delegate screen area to content from another source

➤ Browser provides isolation based on frames

➤ Parent may work even if frame is broken

https://a.com

b.com
d.com

c.com
a.com

Nested execution model

• Windows may contain frames from diff sources

➤ Frame: rigid visible division

iFrame: floating inline frame➤

• Why use frames?

➤ Delegate screen area to content from another source

Browser provides isolation based on frames

Parent may work even if frame is broken

➤

➤

Document object model (DOM)

• Javascript can read and modify

page by interacting with DOM

➤ OO interface for reading and

writing website content

• Includes browser object model

➤ Access window, document, and

other state like history, browser

navigation, and cookies

https://en.wikipedia.org/wiki/Document_Object_Model

Modifying the DOM using JS

<html>
<body>
<ul id=“t1”>

Item 1

...
</body>

</html>

Modifying the DOM using JS

<html>
<body>
<ul id=“t1”>

Item 1

...
</body>

</html>

<script>
const list = document.getElementById(‘t1');
const newItem = document.createElement(‘li’);

const newText = document.createTextNode(‘Item 2’);
list.appendChild(newItem);
newItem.appendChild(newText)

</script>

Modifying the DOM using JS

<html>
<body>
<ul id=“t1”>

Item 1

...
</body>

</html>

<script>
const list = document.getElementById(‘t1');
const newItem = document.createElement(‘li’);

const newText = document.createTextNode(‘Item 2’);
list.appendChild(newItem);
newItem.appendChild(newText)

</script>

Modern websites are complicated

Modern websites are complicated

Lecture objectives

• Basic understanding of how the web works

• Understand relevant attacker models

• Understand browser same-origin policy

Relevant attacker models

http://example.com

Network attacker

http://example.com

http://example.com/
http://example.com/

Relevant attacker models

http://example.com

Network attacker

http://example.com

https://letsencrypt.org/stats/

http://example.com/
http://example.com/

Relevant attacker models

http://example.com

Network attacker

http://example.com

http://example.com/
http://example.com/

Relevant attacker models

Web attacker

https://evil.com

https://evil.comevil.com

http://example.com

Network attacker

http://example.com

http://example.com/
http://example.com/

Relevant attacker models

Gadget attacker

Web attacker with capabilities to inject limited content into honest page

https://example.com

evil.com

example.com

https://evil.com

https://evil.comevil.com

Most of our focus: web attacker

And variants of it

example.com evil.com

evil.comexample.com

example.comevil.com

Lecture objectives

• Basic understanding of how the web works

• Understand relevant attacker models

• Understand browser same-origin policy

Page 1

4chan.org

Page 2

bank.ch

Process 1

zoom

Process 2

cookies/fetchfiles/sockets

keypassx

Safely browse the web in the presence of attackers

➤ The browser is the new OS analogy

Web security model

Page 1

4chan.org

Page 2

bank.ch

Process 1

zoom

Process 2

keypassx

Safely browse the web in the presence of attackers

➤ The browser is the new OS analogy

Web security model

cookies/fetchfiles/sockets

Page 1

4chan.org

Page 2

bank.ch

Process 1

zoom

Process 2

keypassx

Safely browse the web in the presence of attackers

➤ The browser is the new OS analogy

Web security model

VM + UIDs +
seccomp-bpf

cookies/fetchfiles/sockets

UIDs + ACLs

Page 1

4chan.org

Page 2

bank.ch

Process 1

zoom

Process 2

keypassx

Safely browse the web in the presence of attackers

➤ The browser is the new OS analogy

Web security model

VM + UIDs +
seccomp-bpf

cookies/fetchfiles/sockets

UIDs + ACLs

Page 1

4chan.org

Page 2

bank.ch

Process 1

zoom

Process 2

keypassx

Safely browse the web in the presence of attackers

➤ The browser is the new OS analogy

Web security model

VM + UIDs +
seccomp-bpf

SOP

cookies/fetchfiles/sockets

UIDs + ACLs SOP

Same origin policy (SOP)

• Origin: isolation unit/trust boundary on the web

➤ (scheme, domain, port) triple derived from URL

• SOP goal: isolate content of different origins

➤ Confidentiality: script contained in evil.com should not

be able to read data in bank.ch page

Integrity: script from evil.com should not be able to

modify the content of bank.ch page

➤

There is no one SOP

• There is a same-origin policy for…

➤ the DOM

message passing (via postMessage)

network access

CSS and fonts

cookies

➤

➤

➤

➤

