CSE 127: Computer Security

Web Intro

George Obaido
UCSD

Winter 2022

Some slides from Nadia Heninger, Deian Stefan, Zakir Durumeric, Dan
Boneh, and Kirill Levchenko

Brief: Mitigating side channels

Next: Web Intro

https://www.microsoft.com/en-us/research/video/verifying-constant-time-implementations/

Mitigating Cache-based Side Channels

» There’s never a completion solution to avoiding side-channel
attacks. A few mitigations are:

- Application-specific: Disable resource sharing, or isolate
applications. One example is page coloring.

« Compiler-based: One example is Biscuit, developed at Georgia
Tech. Able to guess misses and alerts the CPU scheduler about
abnormal behaviour.

+ Redesigning Hardware: Hard due to large overheads involved.

+ Other solutions are ASLR (although, easy to defeat by Spectre
and Meltdown)

Overall, secure algorithms still need secure implementation.

https://arxiv.org/pdf/2003.03850.pdf

Lecture objectives

» Basic understanding of how the web works
« Understand relevant attacker models

» Understand browser same-origin policy

HTTP protocol

* Protocol from 1989 that allows fetching of
resources (e.g., HTML documents)

» Resources have a uniform resource location (URL):

) A ¢
€ Assignment 1
Comipites Secinity Part 2: echo in x86 (10 pts) 4
About
Syllabus Files for this sub-assignment are located in the x86 subdirectory of the student user's home
Contact Info and Office Hours directory in the VM image; that is, /home/student/x86 . SSH into the VM and cd into that

Assignments ~ directory to begin working on it.

Ass t1 . " -
e For this part, you will be implementing a simplified version of the familiar echo command, using

Assignment 2 raw x86 assembly code. The goal of this assignment is to familiarize you with writing programs Part 2: echo In x86 (10 pis)
directly in x86. Helpful Hints
Submission
Your echo command must behave as follows: Bugs

« When run with a single command line argument (e.g., ./echo Hello):

HTTP protocol

* Protocol from 1989 that allows fetching of
resources (e.g., HTML documents)

» Resources have a uniform resource location (URL):

HTTP protocol

* Protocol from 1989 that allows fetching of
resources (e.g., HTML documents)

» Resources have a uniform resource location (URL):

https://cseweb. ucsd. edu:443/classes/fal9/csel27-ab/lectures?nr=7&lang=enttslides

HTTP protocol

* Protocol from 1989 that allows fetching of
resources (e.g., HTML documents)

» Resources have a uniform resource location (URL):

: //cseweb. ucsd. edu:443/classes/fal9/csel27-ab/lectures?nr=7&lang=en#tslides

scheme

HTTP protocol

* Protocol from 1989 that allows fetching of
resources (e.g., HTML documents)

» Resources have a uniform resource location (URL):

domain

: //cseweb. ucsd. eduj: 443/classes/fal9/csel27-ab/lectures?nr=7&lang=enttslides

scheme

HTTP protocol

* Protocol from 1989 that allows fetching of
resources (e.g., HTML documents)

» Resources have a uniform resource location (URL):

domain

: //cseweb. ucsd. edu;:443/classes/fal9/csel27-ab/lectures?nr=7&lang=enttslides
scheme

HTTP protocol

* Protocol from 1989 that allows fetching of
resources (e.g., HTML documents)

» Resources have a uniform resource location (URL):

domain path

: //cseweb. ucsd. edu;:443/classes/fal9/csel27-ab/lectures?nr=7&lang=enttslides
scheme

HTTP protocol

* Protocol from 1989 that allows fetching of
resources (e.g., HTML documents)

» Resources have a uniform resource location (URL):

domain path

: //cseweb. ucsd. edu:443/classes/fal9/csel27-ab/lectures? ‘ slides

scheme query string

HTTP protocol

* Protocol from 1989 that allows fetching of
resources (e.g., HTML documents)

» Resources have a uniform resource location (URL):

domain path fragment id
: //cseweb. ucsd. edu:443/classes/fal9/csel27-ab/1 ectures‘?{ri?&l ang:en}t@ i des]
scheme query string

domain

https://youtube. com/watch?v=1YM2zFP3Zn0
scheme query string

HTTP protocol

» Clients and servers communicate by exchanging
individual messages (as opposed to a stream of

data).

http://example.com/

HTTP protocol

» Clients and servers communicate by exchanging
individual messages (as opposed to a stream of

data).

http://example.com/

HTTP protocol

» Clients and servers communicate by exchanging
individual messages (as opposed to a stream of

data).
B

http://example.com/

HTTP protocol

» Clients and servers communicate by exchanging
individual messages (as opposed to a stream of
data).

-
° http://example.com
. J

http://example.com/

HTTP protocol

» Clients and servers communicate by exchanging
individual messages (as opposed to a stream of
data).

-
° http://example.com
. J

http://example.com/

HTTP protocol

» Clients and servers communicate by exchanging
individual messages (as opposed to a stream of
data).

-
° http://example.com
J S
. J

http://example.com/

HTTP protocol

» Clients and servers communicate by exchanging
individual messages (as opposed to a stream of

data).

i

JS

http://example.com/

HTTP protocol

» Clients and servers communicate by exchanging
individual messages (as opposed to a stream of

data).

i

JS

LS

http://example.com/

HTTP protocol

» Clients and servers communicate by exchanging
individual messages (as opposed to a stream of

data).

i

JS

http://example.com/

HTTP protocol

» Clients and servers communicate by exchanging
individual messages (as opposed to a stream of

data).

i

JS

N

ne

(S - ¥

-—
-

http://example.com/

Anatomy of a request

v

GET /index. html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep—Alive

User—Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www. example. com

Referer: http://www. google. com?q=dingbats

http://www.example.com/
http://www.google.com/?q=dingbats

Anatomy of a request

v

method

/index. html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep—-Alive

User—Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www. example. com

Referer: http://www. google. com?q=dingbats

http://www.example.com/
http://www.google.com/?q=dingbats

Anatomy of a request

v

method path

/index. html JHTTP/1. 1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep—Alive

User—Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www. example. com

Referer: http://www. google. com?q=dingbats

http://www.example.com/
http://www.google.com/?q=dingbats

Anatomy of a request

v

method path version

/index. html JATTP/L. 1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep—Alive

User—Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www. example. com

Referer: http://www. google. com?q=dingbats

http://www.example.com/
http://www.google.com/?q=dingbats

Anatomy of a request

v

method path version

(GET)/index. html JHTTP/1. 1)

(Accept: image/gif, image/x-bitmap, image/jpeg, */*)
(Accept—Language: en]

headers (Lonnection: Keep—Alive
(User—Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95))
(Host: www. example. com)
(Referer: http://www. google. com?g=dingbats)

http://www.example.com/
http://www.google.com/?q=dingbats

Anatomy of a request

v

method path version

(GET)/index. html JHTTP/1. 1)

(Accept: image/gif, image/x-bitmap, image/jpeg, */*)
(Accept—Language: en]

headers (Lonnection: Keep—Alive
(User—Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95))
(Host: www. example. com)
(Referer: http://www. google. com?q=dingbats)

body
(empty)

http://www.example.com/
http://www.google.com/?q=dingbats

Anatomy of aresponse

A

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet—-Information—Server/5. 0
Connection: keep—alive

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set—Cookie: ...

Content—-Length: 2543

<html>Some data... whatever ... </html>

Anatomy of aresponse

A

status code

HTTP/1. 01200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft—-Internet—-Information-Server/5.0
Connection: keep—alive

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set—Cookie: ...

Content—-Length: 2543

<html>Some data... whatever ... </html>

headers

Anatomy of aresponse

A

status code

HTTP/1.0(200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet—Information-Server/5.0
Connection: keep—alive

Content—Type: text/htm]

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set—Cookie: ...

Content—Length: 2543

<html>Some data... whatever ... </html>

Anatomy of a response

A

status code

HTTP/1. 0 (200 OK)

(Date: Sun, 21 Apr 1996 02:20:42 GMT)
(Server: Microsoft-Internet—-Information-Server/5.0
(Connection: keep—alive

. (Content-Type: text/html
(Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT)
(Set—Cookie: ... |
(Content-Length: 2543

header

body ((htm1>Some data... whatever ... </html> j

Many HTTP methods

GET: Get the resource at the specified URL.
POST: Create new resource at URL with payload.

PUT: Replace current representation of the target
resource with request payload.

PATCH: Update part of the resource.
DELETE: Delete the specified URL.

In practice: it's a mess

* GETs should NOT change server state; in practice,
they sometimes do

* Old browsers don’t send PUT, PATCH, and DELETE

> S0, almost all side-effecting requests are POSTS; real
method hidden in a header or request body

In practice: we need state

In practice: we need state

« HTTP cookie: small piece of data that a server
sends to the browser, who stores it and sends it
back with subsequent requests

 What is this useful for?

In practice: we need state

« HTTP cookie: small piece of data that a server
sends to the browser, who stores it and sends it

back with subsequent requests
* What is this useful for?

> Session management: logins, shopping carts, etc.

~ Personalization: user preferences, themes, etc.

~ Tracking: recording and analyzing user behavior

Setting cookies in response

A

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet—-Information-Server/5.0
Connection: keep—alive

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set—Cookie: trackinglD=3272923427328234
Set—Cookie: userID=F3D947C2

Content—-Length: 2543

<html>Some data... whatever ... </html>

Setting cookies in response

A

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet—-Information-Server/5.0
Connection: keep—alive

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set—Cookie: trackinglD=3272923427328234
Set—Cookie: userID=F3D947C2

Content—-Length: 2543

<html>Some data... whatever ... </html>

Sending cookie with each request

v

GET /index. html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept—Language: en

Connection: Keep—Alive

User—Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Cookie: trackinglID=3272923427328234

Cookie: userID=F3D947C2

Host: www. example. com

Referer: http://www. google. com?q=dingbats

http://www.example.com/
http://www.google.com/?q=dingbats

Sending cookie with each request

v

GET /index. html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept—Language: en

Connection: Keep—Alive

User—Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Cookie: trackinglID=3272923427328234

Cookie: userID=F3D947C2

Host: www. example. com

Referer: http://www. google. com?q=dingbats

http://www.example.com/
http://www.google.com/?q=dingbats

Going from HTTP response to code execution...

Basic browser execution model

 Each browser window....
> Loads content
> Parses HTML and runs Javascript

> Fetches sub resources (e.g., images, CSS, JavaScript)

> Respond to events like onClick, onMouseover,
onLoad, setTimeout

Nested execution model

« Windows may contain frames from different sources

> Frame: rigid visible division P T
Frame 1 Frame 3 Frame 4
> iFrame: floating inline frame S e
Frame 2
* Why use frames? S

~

o o n
a.com
v

Nested execution model

« Windows may contain frames from diff sources
> Frame: rigid visible division
> iFrame: floating inline frame

* Why use frames?

> Delegate screen area to content from another source

~ Browser provides isolation based on frames

~ Parent may work even if frame is broken

Document object model (DOM)

« Javascript can read and modify
page by interacting with DOM

document
Root element
<html>
Element:
<head>

> OO interface for reading and
writing website content

Element:
<title>

lllllll

* Includes browser object model

Document [lodel

DOM

> Access window, document, and
other state like history, browser
navigation, and cookies

I
Text:
"Link text"

Modifying the DOM using JS

<html>
<body>
<ul id= “11” >
Item 1</1i>
<Jul>

o [tem 1

" <Ubodyd
</html>

Modifying the DOM using JS

<html>
<body>
ul id= “t1” >
lidItem 1</1i> e Item 1
<Sul>
" </body>
</html>
{script>
const list = document. getElementById(‘t1’);

const newltem = document. createElement (‘1i”):
const newText = document. createTextNode(‘Item 2");

list. appendChild (newltem) ;
newltem. appendChild (newText)

{/script>

Modifying the DOM using JS

<html>
<body>
<ul id= “t1” >
Aid>Ttem 1</1i> o Item 1
<Sul> e Ttem 2
</body>
</html>
{script>
const list = document. getElementById(‘t1’);

const newltem = document. createElement (‘1i”):
const newText = document. createTextNode(‘Item 2");

list. appendChild (newltem) ;
newltem. appendChild (newText)

{/script>

Modern websites are complicated

Modern websites are complicated

Sectoms Culifornia Entertsinment Sports Fosd Cmate Opinion Place s A Cospoms Crossword sNewspaper L0G N aQ < Lermbmisd S st mrck
Limited-Time > $1107'6 monttn
fLos Angeles Times
fcovo e i rmcons vers | | Larowe i Jf asias I e woar Jf wove st suaem |
&
D
&0
{204
SAVINGS ACCOUNT &
&
200}
&
California plans g
ambitious effort | =4
to vaccinate \ 4 e
young children ez -
Seskevpicy Comrs [z=d
Did Beverly Hills police target o)
Black shoppers on Rodeo Drive? e
st ‘What records and cmails show
covo-19 &
Lo
4

.

Lecture objectives

» Basic understanding of how the web works
« Understand relevant attacker models

» Understand browser same-origin policy

Relevant attacker models

l ghttg://examgle.com

Network attacker

‘- ® hitp://example.com

http://example.com/
http://example.com/

Relevant attacker models

r http://example.com

Network attacker

a
< g >

http://example.com/
http://example.com/

Relevant attacker models

l ghttg://examgle.com

Network attacker

‘- ® hitp://example.com

http://example.com/
http://example.com/

Relevant attacker models

Network attacker

® hitp://example.com o

o[

7

¥ http://example.com

Web attacker

evil.com g

£
https://evil.com

http://example.com/
http://example.com/

Relevant attacker models

Gadget attacker
Web attacker with capabilities to inject limited content into honest page

= e
e
evil.com

example.com
\\ J

Most of our focus: web attacker

. o a
i g
evil.com ! https://evil.com

And variants of it

aQ * o aQ

example.com evil.com g

g}

example.com I evil.com

Q

r. .
evil.com

Lecture objectives

» Basic understanding of how the web works
« Understand relevant attacker models

» Understand browser same-origin policy

Safely browse the web in the presence of attackers

Web security model

> The browser is the new OS analogy

~

g

Process 1 I Process 2

zoom I

keypassx

~

J

.

Page 1 I Page 2

4chan. org I

bank. ch

~

J

files/sockets

cookies/fetch

Safely browse the web in the presence of attackers

Web security model

> The browser is the new OS analogy

~

g

Process 1 I Process 2

9

zoom I

keypassx

~

J

.

Page 1 I Page 2

4chan. org I

bank. ch

~

J

files/sockets

cookies/fetch

Web security model

Safely browse the web in the presence of attackers

> The browser is the new OS analogy

™ s ™ s ~
Process 1 I Process 2 Page 1 I Page 2
g VM + UIDs +
seccomp—bpf
zoom V ey 4chan. org bank. ch
\ Y, \ Y, \ Y,
files/sockets cookies/fetch
N\

UIDs + ACLs

Web security model

Safely browse the web in the presence of attackers

> The browser is the new OS analogy

r B s ™ s ~
Process 1 I Process 2 Page 1 I Page 2
g VM + UIDs + g
seccomp—bpf
zoom V ey 4chan. org I bank. ch
\ Y, \ y, \ y,
files/sockets cookies/fetch
N\

UIDs + ACLs

Web security model

Safely browse the web in the presence of attackers

> The browser is the new OS analogy

s ™ s N s ~ e
Process 1 I Process 2 Page 1 I Page 2
™ MD<
!gg! VM + UIDs +, !gg! SOP
seccomp—bpf
zoom V keypassx 4chan. org V bank. ch

- / - J - / -

files/sockets cookies/fetch
N\ N\

UIDs + ACLs SOP

Same origin policy (SOP)

 Origin: isolation unit/trust boundary on the web
> (scheme, domain, port) triple derived from URL
« SOP goal: isolate content of different origins

> Confidentiality: script contained in evil.com should not
be able to read data in bank.ch page

> Integrity: script from evil.com should not be able to
modify the content of bank.ch page

There iIs no one SOP

» There is a same-origin policy for...

>

>

the DOM

message passing (via postMessage)
network access
CSS and fonts

cookies

